- Vallée MP, Di Sera TL, Nix DA, Paquette AM, Parsons MT, Bell R, et al. Adding in silico assessment of potential splice aberration to the integrated evaluation of BRCA gene unclassified variants. Hum Mutat. 2016;37(7):627-39. doi: 10.1002/humu.22973.
- Bendl J, Stourac J, Salanda O, Pavelka A, Wieben Eric D, Zendulka J, et al. Predict SNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2014;10(1). https://doi.org/10.1371/journal.pcbi.1003440.
- Ernst C, Hahnen E, Engel C, Nothnagel M, J, Schmutzler RK, Hauke J. Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics. BMC Med Genomic. 2018;11(1):35. doi: 10.1186/s12920-018-0353-y.
- Kerr I, Cox H, Moyes K, Evans B, Burdett B, van Kan A, et al. Assessment of in silico protein sequence analysis in the clinical classification of variants in cancer risk genes. J Community Genet. 2017;8(2): 87-95. doi: 10.1007/s12687-016-0289-x.
- Sadowski C, Kohlstedt D, Meisel C, Keller K, Becker K, Mackenroth L, et al. BRCA1/2 missense mutations and the value of in-silico analyses. Eur J Med Genet. 2017;60(11): 572-7. doi: 10.1016/j.ejmg.2017.08.005.
- Leong I, Stuckey A, Lai D, Skinner J, Love D. Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two metaservers to classify long QT syndrome gene mutations. BMC Med Genet. 2015;16:34. doi: 10.1186/s12881-015-0176-z.
- Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV, et al. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res. 2006;34(5):1317-25. doi: 10.1093/nar/gkj518.
- Olatubosun A, Väliaho J, Härkönen J, Thusberg J, Vihinen M. PON-P: Integrated predictor for pathogenicity of missense variants. Hum Mutat. 2012;33(8):1166-74. doi: 10.1002/humu.22102.
- Pshennikova V, Barashkov N, Romanov G, Teryutin F, Solov’ev A, Gotovtsev N, et al. Comparison of predictive in silico tools on missense variants in GJB2, GJB6, and GJB3 genes associated with autosomal recessive deafness 1A (DFNB1A). Sci World J. 2019;1-9. doi: 10.1155/2019/5198931.
- Rahim F, Galehdari H, Mohammadi-asl J, Saki N. Regression modeling and meta-analysis of diagnostic accuracy of SNP-based pathogenicity detection tools for UGT1A1 gene mutation. Genet Res Int. 2013;2013:1-7. doi: 10.1155/2013/546909.
- Thompson B, Greenblatt M, Vallee M, Herkert J, Tessereau C, Young E, et al. Calibration of multiple in silico tools for predicting pathogenicity of mismatch repair gene missense substitutions. Hum Mutat. 2012; 34(1):255-65. doi: 10.1002/humu.22214.
- Thusberg J, Olatubosun A, Vihinen M. Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat. 2011;32(4):358-68. doi: 10.1002/humu.21445.
- Tutt A, Robson M, Garber J, Domchek S, Audeh M, Weitzel J, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235-44. doi: 10.1016/S0140-6736(10)60892-6.
- Walters-Sen L, Hashimoto S, Thrush D, Reshmi S, Gastier-Foster J, Astbury C, et al. Variability in pathogenicity prediction programs: impact on clinical diagnostics. Mol Genet Genomic Med. 2014;3(2):99-110. doi: 10.1002/mgg3.116.
- Tavtigian SV, Samollow PB, Silva Dd, Thomas A. An analysis of unclassified missense substitutions in human BRCA1. Fam Cancer. 2006;5(1):77–88. doi: 10.1007/s10689-005-2578-0.
- Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81. doi: 10.1038/nprot.2009.86.
- Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361-2. doi: 10.1038/nmeth.2890.
- Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):48–9. doi: 10.1038/nmeth0410-248.
- Santos C, Peixoto A, Rocha P, Pinto P, Bizarro S, Pinheiro M, et al. Pathogenicity evaluation of BRCA1 and BRCA2 unclassified variants identified in Portuguese breast/ovarian cancer families. J Mol Diagn. 2014;16(3):324-34. doi: 10.1016/j.jmoldx.2014.01.005.
- Kelley L, Mezulis S, Yates C, Wass M, Sternberg M. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845-858. doi: 10.1038/nprot.2015.053.
- Kelley L, Sternberg M. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009;4(3):363-71. doi: 10.1038/nprot.2009.2.
- Bennett-Lovsey RM, Herbert AD, Sternberg ME, Kelley LA. Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins. 2007;70 (3):611–25. doi: 10.1002/prot.21688.
- Khalil H, Monem F, Al-Quobaili F. Identification of three BRCA1/2 mutations and a study of the likelihood of an association with certain characteristics in Syrian familial breast cancer patients. Middle East J Cancer. 2018;9(4):274-281.
- Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2(9):1511-9. doi: 10.1002/pro.5560020916.
- Pontius J, Richelle J, Wodak SJ. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol. 1996;264(1):121-36. doi: 10.1006/jmbi.1996.0628
- O’Donovan PJ, Livingston DM. BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis. 2010;31(6):961–7. doi: 10.1093/carcin/bgq069.
- Johnson NC, Kruk PA. BRCA1 zinc ring finger domain disruption alters caspase response in ovarian surface epithelial cells. Cancer Cell Int. 2002;2:7. doi: 10.1186/1475-2867-2-7.
|