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Abstract 
Background: The classification of genetic variations depending on their clinical 

impacts is highly relevant for clinical decision-making. Therefore, predicting the 
effects of missense mutations using in silico tools has become a frequently employed 
approach. The objective of this study was to analyze the impacts of a previously 
detected BRCA1 missense mutation using an in silico prediction tool in the context of 
invasive breast cancer. 

Methods: In this bioinformatics study, application of the in silico combination of 
tools Phyre2 to 184(T>C), a BRCA1 missense mutation previously characterized by 
Khalil et al. in 2018, we used to predict its clinical impacts. 

Results: Incidence of the missense mutation caused a disorder in the zinc binding 
RING finger functional domain of BRCA1 protein. This incidence was considered to 
be a major contributor to the interaction of this protein with other proteins in signal 
transduction pathway in the mechanism of cellular response to DNA damage. The 
functional analysis also revealed that the detected missense mutation might significantly 
affect the function of both the protein and phenotype of the living organism.  

Conclusion: In silico prediction confirmed the detrimental impact of the identified 
missense mutation in the exon 2 of BRCA1 gene on both the structural and functional 
properties of the generated BRCA1 protein. 
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Introduction 

Sequencing of a high-risk cancer 
susceptibility gene such as BRCA1 
or BRCA2 may reveal that a patient 
carries a clearly pathogenic variant. 
Most pathogenic variants in these 

genes are nonsense variants, small 
insertion, or deletion variants (indels) 
that create a frameshift, larger gene 
rearrangements, variants generating 
a severe splicing aberration, or 
severely dysfunctional missense 
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substitutions.1 Depending on their clinical impact, 
the classification of genetic variations is highly 
relevant for clinical decision-making. For 
individuals at risk for breast cancer, undergoing 
prophylactic surgery is limited to carriers of 
pathogenic mutations in relevant risk genes. In 
addition, it is important to know the BRCA1/2 
mutation status of patients affected by breast 
cancer because it determines the therapeutic 
response and medication alternative (Such as 
PARP inhibitors).2, 3  

Prior to family history screening, it is essential 
to confirm the pathogenicity of the variant. While 

nonsense and frameshift mutations causing the 
premature termination of protein production are 
usually pathogenic, missense mutations are 
commonly benign.4 The  majority of detected 
mutations are classified as variants of unknown 
clinical significance (VUS).5 There are also 
programs that combine the output from several 
in silico prediction tools and produce a single 
result; all of these programs have been reported 
to have a more enhanced performance compared 
with individual tools.6, 7 The automated prediction 
of the effects of missense mutations has become 
a widely used approach in clinical diagnostics. 

Figure 2. Alignment of the amino acid sequence of mutant exon 2 protein product to that of the normal exon and the identified missense 
mutation [(184(T>C)].

Figure 1. Sequence of the target region in BRCA1 gene and position of the identified mutation 184(T>C).

Home sapiens breast and ovarian cancer susceptibility (BRCA1) mRNA, complete cds.
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In silico approaches for the classification of 
missense mutations are dependent upon the 
assumption that disease-associated missense 
mutations are characterized by a large difference 
in the biochemical properties between substituted 
amino acids2 and those located at highly conserved 
genomic regions among species.3  

In silico tools have their own strengths and 
weaknesses depending on the algorithm; 
moreover, in many cases, performance varies 
depending on the gene and protein.8,9 The MutPred 
tool was proven to be the best predictor of variants 
of genes associated with the limb-girdle muscular 
dystrophy (LGMD);10 MAPP and MAPP + 
PolyPhen-2.1 provided the best combined model 
for testing the variants of MLH1, MSH2, MSH6, 
and PMS2 genes associated with Lynch syndrome, 
a hereditary form of colon cancer;11 the SIFT had 
the most optimal performance  regarding the 
variants of the UGT1A1 gene associated with 
Crigler-Najjar syndrome;12 the Align GVGD in 
silico tool was  reported as the best for analyzing 
the variants of BRCA1/2 genes.13 

Align-GVGD aligns multiple sequences to 
compute the value of two parameters, namely a 
biochemical distance score (extension of the 
pairwise Grantham difference, GD) and a 
conservation score (Grantham variation, GV) for 
each alignment representing a substitution.  

Based on the computed values of GD and GV, 
substitutions are categorized into seven classes 
[0,15,25,35,45,55,65] from least likely to interfere 
with function to most likely to interfere with 

function.14, 15 As a purely sequence-based 
prediction tool, SIFT classifies non-synonymous 
single nucleotide polymorphisms (nsSNPs) based 
on the evolutionary conservation of amino acids 
within protein families. A scaled probability for 
each AA substitution to occur (SIFT score) is 
computed at each position of an alignment. A 
SIFT score of a substituted AA below a threshold 
of 0.05 means that the missense variant is 
predicted to have a harmful effect on protein 
function.16 

MutationTaster2 categorizes variants into either 
disease causing or polymorphism based on char-
acteristics such as evolutionary conservation 
degree and splice site predictions.17 PolyPhen-2 
(Polymorphism Phenotyping v2) uses eight 

Figure 3. Predicted 3D structural model of the normal protein 
product of exons 2 and 3 in BRCA1 gene. 

Figure 4. Predicted secondary structure of the normal protein product encoded by exons 2 and 3 of BRCA1 gene.
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sequence-based and three structural features as 
the input for a naïve Bayes classifier. PolyPhen-
2 is considered only in cases where a 3D structure 
is known for the protein of interest to predict 
whether or not a missense mutation is situated in 
a structurally important/functional site in the 
protein.18 Santos et al. highlighted the importance 
of integrating the clinical and familial data with 
theoretical models that are not able to characterize 
variants alone.19  

Phyre2 is a web-based service for protein 
structure prediction, which is free for non-
commercial use. Over 1500 bioinformatics studies 
have used this service worldwide.20 Phyre2 
predicts the 3D structure of the protein via 
homology modeling technique. In this approach, 
the sequence of the target protein can be modeled 
with an acceptable accuracy on a very remotely 
related sequence of known structure (the template) 
provided the sequence alignment confirms the 
relationship between target and template. Currently 
the most accurate methods for aligning and 
detecting distantly-related sequences depend on 
profiles that capture the mutational tendency of 
each position in an amino acid sequence based 
on the observed mutations in the related 
sequences.21,22 Typically, the amino acid sequences 
of a representative set of all known three-
dimensional protein structures are collected and 
processed by scanning against a large protein 
sequence database. The result is a database of 
profiles, each belonging to a known 3D structure. 
The sequence of interest is similarly processed 

to form a profile which is then scanned against 
the database of profiles using profile-profile 
alignment techniques. These alignments further 
consider the patterns of predicted or known 
secondary structure elements and can be scored 
using many statistical models.22 

A group of Syrian women diagnosed with an 
invasive breast cancer participated in our previous 
study; we identified a missense mutation in the 
exon 2 of BRCA1 gene [184(T>C)] in one of the 
breast cancer patients. In the present study, we 
aimed to predict the structural and functional 
impacts of the identified missense mutation using 
an in silico prediction.  

 

Figure 6. Predicted secondary structure of the protein product encoded by mutant exon 2 and normal exon 3. 

Figure 5. Predicted 3D structural model of the protein product 
encoded by mutant exon 2 and normal exon 3 in BRCA1 gene.  
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Materials and Methods 

The in silico combination of tools Phyre2 
(www.sbg.bio.ic.ac.uk/phyre2/) to 184(T>C), a 
BRCA1 missense mutation previously 
characterized by Khalil et al. in 2018,23 was 
applied to predict its clinical impacts. The 
prediction was performed using the following 
procedure: 

• First, an alignment between the obtained 

sequence and the target region containing the 
exon 2 was performed to determine the matched 
region between the obtained sequence and the 
exon 2, identify the position of the detected 
mutation, and determine whether it occurred inside 
or outside the exon of interest.  

• After ensuring the occurrence of the mutation 
in a protein coding region, the location of the 
detected mutation in the reference full sequence 

Figure 7. The 3D model of the normal protein product visualized by VMD 1.9.3 OpenGL software (colored according to secondary 
structure). 

Figure 8. ERRAT analysis of the entire structure of the protein encoded by exons 2 and 3 in BRCA1 gene.
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of exon 2 was set, which was obtained from 
GenBank database. Geneious software R9 
(Biomatters Ltd.) determined the most probable 
amino acid sequence of exon 2 protein product. 

• Finally, both sequences of natural and mutant 
protein products of the exon 2 was entered into 

Phyre2 server to predict their 3D models and 
secondary structures involving functional domains. 
The structure models achieving the highest match 
scores with the entered protein sequences were 
the most probable models representative of those 
sequences.         

Figure 9. The values of phi/psi combinations related to all residues of the modeled protein product of exons 2 and 3 viewed by 
Ramachandran plot. 

Figure 10. The results of analyzing the PDB-structure of protein product of exons 2 and 3 using PROVE (involving the calculated 
statistical atomic Z-scores, Z-score mean, Z-score standard deviation, and Z-score RMS). The percentage of outlier atoms from the 
analyzed structure  is 4.0% (Warning). 
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Phyre2 Investigator investigated the possible 
functional effects of the detected missense 
mutation; such advanced alternative allowed us 
to perform a group of protein functional analyses 
including: 

• Conservation analysis to 1) analyze the 
conservation of the amino acid sequence of protein 
depending on a bioinformatics approach called 
Jensen-Shannon variation, and 2) classify amino 
acid residues according to their relative importance 
regarding the proper protein structure and function. 

• PI-Site interface residues analysis using PI-
Site protein-protein interface database. 

• Pocket detection by the use of fpocket2 
program. It has been frequently found that large 
pockets form locations for the protein active sites.  

• Mutational sensitivity analysis which predicts 
the effects of each of the twenty possible missense 
mutations in a specific position in the protein 
sequence on both the protein function and 
phenotype of the organism. SuSPect tool 
conducted that analysis.21 

 
Results 

Figure 1 shows the nucleotide sequence of the 

target region (the shaded region) spanning from 
43,123,921 to 43,124,178, involving the exon 2 in 
BRCA1 gene and position of the missense mutation 

Figure 11. Conservation analysis of the Leucine residue in the 
position of substitution (22).   

Figure 12. PI-Site interface residues analysis of the replaced leucine residue. 
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detected in the exon 2 referred to by an arrow.  
We obtained figure 2 through aligning the 

amino acid sequence of protein product of the 
mutant exon 2 [(184(T>C)] to that of the normal 
exon. The length of the wild-type exon 2 is 99 
bp and the first 19 nucleotides of that exon form 
a non-coding region. 

Figures 3, 4, 5, and 6 show the predicted protein 
structures for each of the normal and mutant 
exons.  

Figure 7 shows the 3D model of the normal 
protein product visualized by VMD 1.9.3 OpenGL 
software. 

Different types of atoms, carbon (C), nitrogen 
(N), and oxygen (O) are non-randomly distributed 
in the proteins. This  results in six different 
combinations of pairwise non-covalent interactions 
(CC, CN, CO, NN, NO, and OO). Errors in model 
building lead to more randomized distributions 
of the different atom types. Statistical methods 
are able to distinguish these distributions from 
the correct ones. ERRAT uses a quadratic error 
function to characterize the set of pairwise 
interactions from nine-residue sliding windows 

in a database of 96 reliable protein structures. 
Analysis of non-covalent interaction patterns from 
each window can specify the regions of candidate 
protein structures that are mistraced or 
misregistered.24 Figure 8 shows ERRAT analysis 
of the entire structure of the protein encoded by 
exons 2 and 3 in BRCA1 gene. 

Figure 9 shows Ramachandran plot which 
illustrates the values of phi/psi combinations 
pertaining to all residues of the modeled protein 
product of exons 2 and 3. In this figure, red 
indicates the most favorable regions, yellow 
represents the allowed region, pale yellow is the 
generously allowed region, and white refers to 
the disallowed regions. Phi and psi are the dihedral 
angles (CO)C----Cα and Cα----N(NH), 
respectively. 

Figure 10 shows the results of analyzing the 
PDB-structure of the protein product of exons 2 
and 3 using PROVE (PROtein Volume 
Evaluation), which is a program that implements 
volume-based structure validation procedures to 
evaluate the quality of protein crystal structures. 
Standard ranges of atomic and residue volumes 

Figure 13. Pocket detection analysis for the predicted localization of the replaced leucine residue. 
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are calculated in highly resolved and well-refined 
protein crystal structures. Deviations of the atomic 
volumes from the standard values are evaluated 
as the volume Z-scores. The calculated volume 
Z-score root mean square deviation (Z-score rms) 
measures the average magnitude of the volume 
irregularities in the structure. Z-score rms 
decreases with the increase in the resolution and 
R-factor, reflecting more accurate models. The 
normal limits of Z-score rms values are specified 
in the scored structure. Structures whose Z-score 
rms exceeds these limits are considered as outliers. 
As revealed by other analyses, such structures 
also exhibit unusual stereochemistry.25   

Figures 11, 12, 13, and 14 show the results 
obtained from the functional analyses performed 
by Phyre2 Investigator tools 

Figure 11 shows the conservation analysis of 
the Leucine residue in the position of substitution 
(22). 

Figure 12 shows PI-Site interface residues 
analysis of the replaced Leucine residue. 

Figure 13 shows the Pocket detection analysis 
for the predicted localization of the replaced 
Leucine residue.  

Figure 14 shows the result of mutational 
sensitivity analysis. 

 

Discussion 

The alignment of the amino acid sequence 
related to the protein product of the mutant exon 
2 to that of the normal exon showed that a serine 
residue (S) replaced the leucine (L) in the position 
22 of normal protein. This was the result of the 
missense mutation [(184(T>C)] previously 
characterized by Khalil et al. in 2018.23 Substituted 
amino acids are significantly different regarding 
their biochemical properties. Leucine is a nonpolar 
amino acid while serine is polar neutral. Therefore, 
the detected missense mutation is likely to be 
associated with the disease.  

Exon 2 was shown as a contributor to coding 
an important functional domain of BRCA1 protein 
structure known as amino-terminal zinc binding 
RING finger domain. Zinc binding RING finger 
domain consists of two zinc finger-like motifs 
connected through linking C3HC4 regions. This 
domain is highly conserved among species. 
Therefore, its associated disorders may strongly 
change the binding properties of the protein interfering 
with its interactions with other proteins involved in 
the cellular damage repair machinery.26,27  

Phyre2 Investigator functional analyses was 
carried out to investigate the possible functional 
effects of the detected missense mutation on the 
protein product; on the other hand, the 

Figure 14. Mutational sensitivity analysis. 
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conservation analysis showed that the leucine 
residue in the position of substitution (22) had a 
low relative conservation and was highly 
replaceable; it should be noted that conservation 
degree was determined according to color by 
checking the relative conservation scale. The PI-
Site interface residues analysis of the replaced 
leucine residue further showed the predicted 
localization of that residue in the protein-protein 
interface. However, Pocket detection analysis 
showed the predicted localization of the replaced 
leucine residue between two of the largest pockets 
in the protein sequence (red regions in the 
visualized structure). Those pockets were 
frequently considered as the most possible 
locations for the protein active sites. On the other 
hand, mutational sensitivity analysis showed that 
the identified missense mutation (L>S) was highly 
predicted to affect the protein function and 
phenotype of the living organism; of note, the 
mutational sensitivity was determined according 
to color by checking the mutational sensitivity 
scale.  

 
Conclusion 

In silico prediction confirmed the harmful 
impact of the identified missense mutation in the 
exon 2 of BRCA1 gene on both the structural and 
functional properties of the generated BRCA1 
protein. Therefore, the occurrence of such 
mutation may interfere with the important role 
of BRCA1 protein as a tumor suppressor protein 
through disrupting the protein's ability to interact 
with other proteins involved in the nuclear 
complex responsible for the regulation of 
transcription, cell cycle control, and DNA damage 
repair. 
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