Bagheri, H, Salajegheh, A, Javadi, A, Amini, P, Shekarchi, B, Shabeeb, D, Eleojo Musa, A, Najafi, M. (1399). Radioprotective Effects of Zinc and Selenium on Mice Spermatogenesis. سامانه مدیریت نشریات علمی, 10(6), 707-712. doi: 10.31661/jbpe.v0i0.957
H Bagheri; A Salajegheh; A Javadi; P Amini; B Shekarchi; D Shabeeb; A Eleojo Musa; M Najafi. "Radioprotective Effects of Zinc and Selenium on Mice Spermatogenesis". سامانه مدیریت نشریات علمی, 10, 6, 1399, 707-712. doi: 10.31661/jbpe.v0i0.957
Bagheri, H, Salajegheh, A, Javadi, A, Amini, P, Shekarchi, B, Shabeeb, D, Eleojo Musa, A, Najafi, M. (1399). 'Radioprotective Effects of Zinc and Selenium on Mice Spermatogenesis', سامانه مدیریت نشریات علمی, 10(6), pp. 707-712. doi: 10.31661/jbpe.v0i0.957
Bagheri, H, Salajegheh, A, Javadi, A, Amini, P, Shekarchi, B, Shabeeb, D, Eleojo Musa, A, Najafi, M. Radioprotective Effects of Zinc and Selenium on Mice Spermatogenesis. سامانه مدیریت نشریات علمی, 1399; 10(6): 707-712. doi: 10.31661/jbpe.v0i0.957
Radioprotective Effects of Zinc and Selenium on Mice Spermatogenesis
1MSc, Radiation and Wave Research Center, Aja University of Medical Sciences, Tehran, Iran
2MD, Department of Pathology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3MSc, Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
4MD, Radiation and Wave Research Center, Aja University of Medical Sciences, Tehran, Iran
5PhD, Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
6MSc, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
7PhD, Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
8PhD, Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
چکیده
Background: Spermatogenesis system is one of the most radiosensitive organs in the body. A usual therapeutic dose of radiation such as the conventional 2 Gy in each fraction of radiotherapy and lower doses seen in diagnostic radiology or a radiation disaster affect the process of spermatogenesis potently. Selenium and zinc are two important elements playing key roles in the development of sperms and also have radioprotective effects. Objective: In this study aims to evaluate the radioprotective effect of zinc and selenium against radiation-induced mice testis injury. Material and Methods: In this experimental study, 30 mice were divided equally into 6 groups, including control selenium treated, zinc treated, radiation, radiation + selenium, radiation + zinc. Treatments started from 2 days before irradiation with 2 Gy cobalt-60 gamma rays. After 37 days, all mice were killed for histopathological evaluations. Results: Results showed that exposure to radiation caused a potent effect on spermatogenesis system. Treatment with selenium reversed these radiation effects potently, while zinc had some limited protective effects. Zinc treatment itself caused a detrimental effect on epididymis and, in combination with radiation, it leads to more damage to seminiferous tubules. Conclusion: In contrast to previous studies that proposed zinc to protect spermatogenesis against various toxic agents, results of this study showed that although zinc may protect from some parameters, it potentiates radiation damage on seminiferous tubules and has a detrimental effect on the epididymis. By contrast, zinc and selenium could alleviate radiation-induced toxicity on the most of the evaluated parameters.
Marjault HB, Allemand I. Consequences of irradiation on adult spermatogenesis: Between infertility and hereditary risk. Mutat Res. 2016;770:340-8. doi: 10.1016/j.mrrev.2016.07.004. PubMed PMID: 27919340.
Moreno SG, Dutrillaux B, Coffigny H. High sensitivity of rat foetal germ cells to low dose-rate irradiation. Int J Radiat Biol. 2001;77:529-38. doi: 10.1080/09553000010030211. PubMed PMID: 11304444.
Trasler JM. Epigenetics in spermatogenesis. Mol Cell Endocrinol. 2009;306:33-6. doi: 10.1016/j.mce.2008.12.018. PubMed PMID: 19481683.
Coleman CN, Blakely WF, Fike JR, et al. Molecular and cellular biology of moderate-dose (1–10 Gy) radiation and potential mechanisms of radiation protection: report of a workshop at Bethesda, Maryland, December 17–18, 2001. Radiat Res. 2003;159:812-34.
Holdcraft RW, Braun RE. Hormonal regulation of spermatogenesis. Int J Androl. 2004;27:335-42. doi: 10.1111/j.1365-2605.2004.00502.x. PubMed PMID: 15595952.
Hidiroglou M, Knipfel JE. Zinc in mammalian sperm: a review. J Dairy Sci. 1984;67:1147-56. doi: 10.3168/jds.S0022-0302(84)81416-2. PubMed PMID: 6378991.
Emami S, Hosseinimehr SJ, Taghdisi SM, Akhlaghpoor S. Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorg Med Chem Lett. 2007;17:45-8. doi: 10.1016/j.bmcl.2006.09.097. PubMed PMID: 17049858.
Veldwijk MR, Herskind C, Sellner L, et al. Normal-tissue radioprotection by overexpression of the copper-zinc and manganese superoxide dismutase genes. Strahlenther Onkol. 2009;185:517-23. doi: 10.1007/s00066-009-1973-0. PubMed PMID: 19652935.
Floersheim GL, Floersheim P. Protection against ionising radiation and synergism with thiols by zinc aspartate. Br J Radiol. 1986;59:597-602. doi: 10.1259/0007-1285-59-702-597. PubMed PMID: 3518853.
Moslemi MK, Tavanbakhsh S. Selenium–vitamin E supplementation in infertile men: effects on semen parameters and pregnancy rate. Int J Gen Med. 2011;4:99-104. doi: 10.2147/ijgm.s16275.
Amini P, Kolivand S, Saffar H, Rezapoor S, Motevaseli E, Najafi M, et al. Protective effect of Selenium-L-methionine on radiation-induced acute pneumonitis and lung fibrosis in rat. Curr Clin Pharmacol. 2018. doi: 10.2174/1574884714666181214101917.
Verma P, Kunwar A, Priyadarsini KI. Effect of Low-Dose Selenium Supplementation on the Genotoxicity, Tissue Injury and Survival of Mice Exposed to Acute Whole-Body Irradiation. Biol Trace Elem Res. 2017;179:130-9. doi: 10.1007/s12011-017-0955-9.
Boran C, Ozkan KU. The effect of zinc therapy on damaged testis in pre-pubertal rats. Pediatr Surg Int. 2004;20:444-8. doi: 10.1007/s00383-004-1173-z.
Ayhanci A, Yaman S, Appak S, Gunes S. Hematoprotective effect of seleno-L-methionine on cyclophosphamide toxicity in rats. Drug Chem Toxicol. 2009;32:424-8. doi: 10.1080/01480540903130682. PubMed PMID: 19793036.
Khan S, Adhikari JS, Rizvi MA, Chaudhury NK. Radioprotective potential of melatonin against 60 Co γ-ray-induced testicular injury in male C57BL/6 mice. J Biomed Sci. 2015;22:61. doi: 10.1186/s12929-015-0156-9.
Mahdavi M, Mozdarani H. Protective effects of famotidine and vitamin C against radiation induced cellular damage in mouse spermatogenesis process. International Journal of Radiation Research. 2011;8:223.
Songthaveesin C, Saikhun J, Kitiyanant Y, Pavasuthipaisit K. Radio-protective effect of vitamin E on spermatogenesis in mice exposed to gamma-irradiation: a flow cytometric study. Asian Journal of Andrology. 2004;6:331-6.
Shaban NZ, Zahran AMA, El-Rashidy FH, Kodous ASA. Protective role of hesperidin against γ-radiation-induced oxidative stress and apoptosis in rat testis. Journal of Biological Research-Thessaloniki. 2017;24:5.
Sieber F, Muir SA, Cohen EP, Fish BL, et al. Dietary selenium for the mitigation of radiation injury: effects of selenium dose escalation and timing of supplementation. Radiat Res. 2011;176:366-74. PubMed PMID: 21867430. PubMed PMCID: PMC3237945.
Sieber F, Muir SA, Cohen EP, North PE, et al. High-dose selenium for the mitigation of radiation injury: a pilot study in a rat model. Radiat Res. 2009;171:368-73. doi: 10.1667/0033-7587-171.3.368.
Puspitasari IM, Abdulah R, Yamazaki C, Kameo S, Nakano T, Koyama H. Updates on clinical studies of selenium supplementation in radiotherapy. Radiat Oncol. 2014;9:125. doi: 10.1186/1748-717X-9-125. PubMed PMID: 24885670. PubMed PMCID: PMC4073179.
Dani V, Dhawan DK. Radioprotective role of zinc following single dose radioiodine (131I) exposure to red blood cells of rats. Indian J Med Res. 2005;122:338-42. PubMed PMID: 16394327.