تعداد نشریات | 20 |
تعداد شمارهها | 1,149 |
تعداد مقالات | 10,519 |
تعداد مشاهده مقاله | 45,424,490 |
تعداد دریافت فایل اصل مقاله | 11,296,680 |
In vitro evaluation of erythromycin incorporated with β-cyclodextrin and povidone polymers for capsule drug delivery | ||
Trends in Pharmaceutical Sciences | ||
دوره 10، شماره 3، آذر 2024، صفحه 259-270 اصل مقاله (689.58 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30476/tips.2024.102783.1241 | ||
نویسندگان | ||
Didacus Nnabuike Nnamani* 1؛ Emokpae George1؛ Alonge Taye Abimbola1؛ Nathaniel Ejike Onyenwe2 | ||
1Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Igbinedion University, Okada, Edo State, Nigeria. | ||
2Department of Pharmaceutical Microbiology, College of Pharmacy, Igbinedion University, Okada, Edo State, Nigeria. | ||
چکیده | ||
Entrapment of drugs within polymers have been used to modify dosage drug release. The aim of this work is to compare the entrapment potentials of water soluble povidone and or β-cyclodextrin polymers in encapsulated erythromycin. Drug-polymer interaction was determined using FTIR, SEM and DSC. Using 23 factorial design, 8 variant polymer combinations were devised. Wetted erythromycin and polymer mix was kneaded and granulated. The granules were dried and analysed for drug-loading and micromeritic properties before being filled into a hard gelatin capsule. The capsules were analysed for physicochemical and antimicrobial properties. The FTIR spectrum of the drug-polymer depicts the leading peaks of erythromycin. SEM images and DSC thermogram of the drug-polymers showed irregular fluffy and porous structures, and reduction in endothermic temperatures respectively. The granules showed Carr’s index, Hausner ratios and angle of repose < 24.07, 1.31 and 30.51° respectively, and over 97.81 % drug entrapment. All capsules met USP specification for weight uniformity. Erythromycin-povidone capsules disintegrated within 15 min, had 53 % dissolution in 15 min, and 53 – 100 % dissolution within 180 min. At 25 mg/ ml, erythromycin-povidone capsule gave zones of inhibition of 37.67 – 39.83 mm. FTIR analysis of the erythromycin-polymer mix indicated compatibility of erythromycin with the polymers, the SEM indicated formation of amorphous complex, while the DSC inferred non-complex interaction and improvement in solubility. In comparison with formulations with erythromycin-β cyclodextrin complex, erythromycin-povidone complex showed better promise in enhancing erythromycin capsule formulation and antimicrobial properties. | ||
کلیدواژهها | ||
Entrapment؛ wet granulation؛ kneaded؛ antimicrobial | ||
مراجع | ||
1. Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, Ali F, Bhattacharjee B, Vora L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines (Basel). 2022 Nov 17;10(11):1946. doi: 10.3390/vaccines10111946. PMID: 36423041; PMCID: PMC9694785. 2 Gong S, Hu X, Chen S, Sun B, Wu JL, Li N. Dual roles of drug or its metabolite-protein conjugate: Cutting-edge strategy of drug discovery using shotgun proteomics. Med Res Rev. 2022 Jul;42(4):1704-1734. doi: 10.1002/med.21889. Epub 2022 May 31. PMID: 35638460. 3 Sagita E, Syahdi RR, Arrahman A. Synthesis of polymer-drug conjugates using natural polymer: what, why and how? Pharm Sci Res(PSR) 2018; 5(3): 97-115. 4 Singh J, Walia M, Harikumar S. Formulation and evaluation of fast dissolving tablets of rosuvastatin. J Drug Del Ther. 2014:4(5);173-181. 5 Grant JJ, Pillai SC, Perova TS, Hehir S, Hinder SJ, McAfee M, Breen A. Electrospun fibres of chitosan / PVP for the effective chemotherapeutic drug delivery of 5 –fluorourracil. Chemosensors. 2021;9(4):70. 6 Hiremath P, Nuguru K, Agrahari V. Material attributes and their impact on wet granulation process performance In Narang, A.S., Badaway, A.I.F. (Eds.) Handbook of Pharmaceutical Wet Granulation: Theory and Practice in Quality by Design Paradigm. Cambridge. 2019:263-315. 7 Tiwari G, Tiwari R, Rai AK. Cyclodextrins in delivery systems: Applications. J Pharm Bioallied Sci. 2010 Apr;2(2):72-9. doi: 10.4103/0975-7406.67003. PMID: 21814436; PMCID: PMC3147107. 8 Ramos-Martínez B, Dávila-Pousa C, Merino-Bohórquez V, García-Palomo M, Flox-Benítez MªP. Use of cyclodextrins as excipients in pharmaceutical products: why not in extemporaneous preparations? Farm Hosp. 2021 Nov 13;46(1):31-39. English. PMID: 35379090. 9 Franco P, De Marco I. The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers (Basel). 2020 May 13;12(5):1114. doi: 10.3390/polym12051114. PMID: 32414187; PMCID: PMC7285361. 10 Buhler V. Polivinylpyrrolidone Excipient for Pharmaceuticals: Povidone, Crospovidone and Copovidone. Berlin, Heidelberg, New York: Springer, 2005; p. 66-124. doi:10.1007/b138598 11 Awasthi R,Manchanda S, Das P, Velu V, Malipeddi H, et al. 9 - Poly(vinylpyrrolidone). Engineering of Biomaterials for Drug Delivery Systems. Beyond Polyethylene Glycol. Woodhead Publishing Series. 2018:255-272. 12 Platon VM, Dragoi B, Marin L. Erythromycin Formulations-A Journey to Advanced Drug Delivery. Pharmaceutics. 2022 Oct 13;14(10):2180. doi: 10.3390/pharmaceutics14102180. PMID: 36297615; PMCID: PMC9608461. 13 Kempe H, Parareda Pujolràs A, Kempe M. Molecularly imprinted polymer nanocarriers for sustained release of erythromycin. Pharm Res. 2015 Feb;32(2):375-88. doi: 10.1007/s11095-014-1468-2. Epub 2014 Aug 8. PMID: 25103333. 14 Cyphert EL, Wallat JD, Pokorski JK, von Recum HA. Erythromycin Modification That Improves Its Acidic Stability while Optimizing It for Local Drug Delivery. Antibiotics (Basel). 2017 Apr 25;6(2):11. doi: 10.3390/antibiotics6020011. PMID: 28441360; PMCID: PMC5485444. 15 Yu J, Cen D, Chen Y, Zhao H, Xu M, Wu S, et al. Epsilon-poly-l-lysine conjugated erythromycin for enhanced antibiotic therapy. RSC Adv. 2023 Jun 20;13(27):18651-18657. doi: 10.1039/d3ra03168c. PMID: 37346938; PMCID: PMC10280332. 16 Gauri HS. Recent development of novel drug delivery of herbal drugs. RPS Pharmacy and Pharmacology Reports, 2023; 2(4), rqad028. 17 Nwankwo EO, Nasiru MS. Antibiotic sensitivity pattern of Staphylococcus aureus from clinical isolates in a tertiary health institution in Kano, Northwestern Nigeria. Pan Afr Med J. 2011;8:4. doi: 10.4314/pamj.v8i1.71050. Epub 2011 Jan 26. PMID: 22121413; PMCID: PMC3201603. 18 Brisaert M, Heylen M, Plaizier-Vercammen J. Investigation on the chemical stability of erythromycin in solutions using an optimization system. Pharm World Sci. 1996 Oct;18(5):182-6. doi: 10.1007/BF00820730. PMID: 8933579. 19 Shafia S, Chandluri P, Ganpisetti R, Lakshmi BVS, Swami PA. Erythromycin as broad spectrum antibiotics. World J Pharm Med Res. 2016:2(6): 23-26 20 Talik PAW, Øuromska-witek B, Hubicka U, Krzek JAN. The use of the dsc method in quantification of active pharmaceutical. ACTA Pol Pharm Drug Res. 2017; 74(4), 1049–1055. 21 Brtel KD, Zoglio MA, Ritschel WA, Carstensen JT. Physical aspects of wet granulation IV –effect of kneading time on dissolution rates and tablet properties. Drug Dev Ind Pharm. 2008; 16(6): 963-981. 22 Morello JA, Mizer HE, Granato PA. Disinfectant: chemical antimicrobial gent. In Laboratory Manual and Workbook in Microbiology, Applications to Patient Care. The McGraw-Hill Companies. Section VI, 2002; exercise 14, p. 90 - 94 23 Barnes V L, Heithoff DM, Mahan SP, House JK, Mahan MJ. Antimicrobial susceptibility testing to evaluate minimum inhibitory concentration values of clinically relevant antibiotics. STAR Protoc. 2023 Sep 15;4(3):102512. doi: 10.1016/j.xpro.2023.102512. Epub 2023 Aug 10. PMID: 37566547; PMCID: PMC10448204. 24 Saxena P, Shukla P, Gaur M. Thermal analysis of polymer blends and double layer by DSC. Polym Compos. 2021;29(9_suppl):S11-S18. doi:10.1177/0967391120984606 25 Qosim N, Majd H, Huo S, Edirisinghe M, Williams GR. Hydrophilic and hydrophobic drug release from core (polyvinylpyrrolidone)-sheath (ethyl cellulose) pressure-spun fibers. Int J Pharm. 2024 Apr 10;654:123972. doi: 10.1016/j.ijpharm.2024.123972. Epub 2024 Mar 7. PMID: 38458404. 26 Fathy M, Hassan MA, Mohamed FA. Differential scanning calorimetry to investigate the compatibility of ciprofloxacin hydrochloride with excipients. Pharmazie. 2002 Dec;57(12):825-8. PMID: 12561245. 27 Ali M, Sherazi STH, Mahesar SA. Quantification of erythromycin in pharmaceutical formulation by transmission Fourier transform infrared spectroscopy. Arab J Chem. 2012; 7:1104-1109. 28 Ali A, Zhang N, Sabtos RM. Mineral characterization using scanning electron microscopy (SEM): a review of the fundamentals, advancements, and research directions. Appl Sci. 2023;13(23),12600. 29 Wang S, Ren F. Rheological, pasting, and textural properties of starch In Starch Structure, Functionality and Application in Foods. Springer, Singapore, 2020. p. 121-129. https://doi.org/10.1007/978-981-15-0622-2_2 30 Shoukat H, Pervaiz F, Khan M, Rehman S, Akram F, Abid U, et al. Development of β-cyclodextrin/polyvinypyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) hybrid nanogels as nano-drug delivery carriers to enhance the solubility of Rosuvastatin: An in vitro and in vivo evaluation. PLoS One. 2022 Jan 21;17(1):e0263026. doi: 10.1371/journal.pone.0263026. PMID: 35061861; PMCID: PMC8782392. 31 Giuliano C, Patel CR, Kale-Pradhan PB. A Guide to Bacterial Culture Identification And Results Interpretation. P T. 2019 Apr;44(4):192-200. PMID: 30930604; PMCID: PMC6428495. 32 Mutahhar A, Puspitasari D. Sensitivity of erythromycin against corynebacterium diphtheria. Indonesian J Tropical Infectious Disease. 2020; 8(1): 24-29. | ||
آمار تعداد مشاهده مقاله: 258 تعداد دریافت فایل اصل مقاله: 131 |