- Cao J, Eshak ES, Liu K, Muraki I, Cui R, Iso H, et al. Television viewing time and breast cancer incidence for Japanese premenopausal and postmenopausal women: The JACC study. Cancer Res Treat. 2019;51(4):1509-17.doi: 10.4143/crt.2018.705.
- Changavi AA, Shashikala A, Ramji AS. Epidermal growth factor receptor expression in triple negative and nontriple negative breast carcinomas. J LabPhysicians. 2015;7 (2):79-83.doi: 10.4103/0974-2727.163129.
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492. Erratum in: CA Cancer J Clin. 2020;70(4):313.
- Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2020;70(1):7-30.doi: 10.3322/caac.21590.
- Gnant M, Thomssen C, Harbeck N. St. Gallen/Vienna 2015: a brief summary of the consensus discussion. Breast Care (Basel). 2015;10(2):124-30. doi: 10.1159/000430488.
- Lehmann BD, Colaprico A, Silva TC, Chen J, An H, Ban Y, et al. Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat Commun. 2021;12(1):6276. doi: 10.1038/s41467-021-26502-6.
- Zhang Y, Wang Q, Yang WK, Wang YS, Zhou Q, Lin J, et al. Development of an immune-related prognostic biomarker for triple-negative breast cancer. Ann Med. 2022;54(1):1212-20. doi: 10.1080/07853890.2022.2067894.
- Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.doi: 10.1038/ncomms3612.
- Nederlof I, Horlings HM, Curtis C, Kok M. A High-dimensional window into the micro-environment of triple negative breast cancer. Cancers (Basel). 2021;13(2):316.doi: 10.3390/cancers13020316.
- Hamy A-S, Pierga J-Y, Sabaila A, Laas E, Bonsang-Kitzis H, Laurent C, et al. Stromal lymphocyte infiltration after neoadjuvant chemotherapy is associated with aggressive residual disease and lower disease-free survival in HER2-positive breast cancer. Annals of Oncology. 2017; 28: 2233-40. doi:10.1093/annonc/mdx309.
- Sharma P, Stecklein SR, Kimler BF, Sethi G, Petroff BK, Phillips TA, et al. The prognostic value of BRCA1 promoter methylation in early stage triple negative breast cancer. J Cancer Ther Res. 2014;3(2):1-11. doi: 10.7243/2049-7962-3-2.
- Sporikova Z, Koudelakova V, Trojanec R, Hajduch M. Genetic markers in triple-negative breast cancer. Clin Breast Cancer. 2018;18(5):e841-e850. doi: 10.1016/j.clbc.2018.07.023.
- Elwan A, Abdelrahman AE, Alnagar AA, Abdelhamid MI, Nawar N. Clinicopathological features and treatment challenges in triple negative breast cancer patients: a retrospective cohort study. Turk Patoloji Derg. 2021;37(2):121-9. doi: 10.5146/tjpath.2020.01516.
- Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers (Basel). 2020;12(4):916.doi: 10.3390/cancers12040916.
- Fan M, Chen J, Gao J, Xue W, Wang Y, Li W, et al. Triggering a switch from basal- to luminal-like breast cancer subtype by the small-molecule diptoindonesin G via induction of GABARAPL1. Cell Death Dis. 2020;11(8):635. doi: 10.1038/s41419-020-02878-z.
- Bernhardt SM, Dasari P, Walsh D, Townsend AR, Price TJ, Ingman WV. Hormonal modulation of breast cancer gene expression: implications for intrinsic subtyping in premenopausal women. Front Oncol. 2016;6:241.doi:10.3389/fonc.2016.00241.
- Yin L, Duan J-J, Bian X-W, Yu S-c. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Research. 2020; 22(61): 22-61. doi.org/10.1186/s13058-020-01296-5.
- Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. doi: 10.1186/s13058-020-01296-5.
- Zhao S, Zuo WJ, Shao ZM, Jiang YZ. Molecular subtypes and precision treatment of triple-negative breast cancer. Ann Transl Med. 2020;8(7):499. doi: 10.21037/atm.2020.03.194.
- Singh DD, Yadav DK. TNBC: Potential targeting of multiple receptors for a therapeutic breakthrough, nanomedicine, and immunotherapy. Biomedicines. 2021;9(8):876. doi: 10.3390/biomedicines9080876.
- Lehmann BD, Colaprico A, Silva TC, Chen J, An H, Ban Y, et al. Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. NATURE COMMUNICATIONS. 2021;12:6276. doi.org/10.1038/s41467-021-26502-6.
- Zhao S, Zuo W-J, Shao Z-M, Jiang Y-Z. Molecular subtypes and precision treatment of triple-negative breast cancer. Ann Transl Med. 2020; 8(7): 4. doi.org/10.21037/atm.2.
- Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One. 2016;11(6):e0157368.doi: 10.1371/journal.pone.0157368.
- Larsen DH, Hari F, Clapperton JA, Gwerder M, Gutsche K, Altmeyer M, et al. The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage. Nat Cell Biol. 2014;16(8):792-803.doi: 10.1038/ncb3007.
- Hu J, Lai Y, Huang H, Ramakrishnan S, Pan Y, Ma VWS, et al. TCOF1 upregulation in triple-negative breast cancer promotes stemness and tumour growth and correlates with poor prognosis. Br J Cancer. 2022;126(1):57-71. doi: 10.1038/s41416-021-01596-3.
- Walker AJ, Wedam S, Amiri-Kordestani L, Bloomquist E, Tang S, Sridhara R, et al. FDA approval of palbociclib in combination with fulvestrant for the treatment of hormone receptorepositive, HER2-negative metastatic breast cancer. Clin Cancer Res. 2016;22:4968-72.doi: 10.1158/1078-0432.CCR-16-0493.
- Asghar US, Barr AR, Cutts R, Beaney M, Babina I, Sampath D, et al. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin Cancer Res. 2017;23:5561-72.doi: 10.1158/1078-0432.CCR-17-0369.
- Liu T, Yu J, Deng M, Yin Y, Zhang H, Luo K, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat Commun. 2017;8:13923. doi: 10.1038/ncomms13923.
- Walker AJ, Wedam S, Amiri-Kordestani L, Bloomquist E, Tang S, Sridhara R, et al. FDA approval of palbociclib in combination with Fulvestrant for the treatment of hormone receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res. 2016;22(20):4968-72. doi: 10.1158/1078-0432.CCR-16-0493.
- Rajput S, Khera N, Guo Z, Hoog J, Li S, Ma CX. Inhibition of cyclin dependent kinase 9 by dinaciclib suppresses cyclin B1 expression and tumor growth in triple negative breast cancer. Oncotarget. 2016;7:56864-75.doi: 10.18632/oncotarget.10870.
- Zhai X, Yang Z, Liu X, Dong Z, Zhou D. Identification of NUF2 and FAM83D as potential biomarkers in triple-negative breast cancer. PeerJ. 2020;8:e9975. doi: 10.7717/peerj.9975.
- Xu W, Wang Y, Wang Y, Lv S, Xu X, Dong X. Screening of differentially expressed genes and identification of NUF2 as a prognostic marker in breast cancer. Int J Mol Med. 2019;44(2):390-404. doi: 10.3892/ijmm.2019.4239.
- Wang Z, Liu Y, Zhang P, Zhang W, Wang W, Curr K, et al. FAM83D promotes cell proliferation and motility by downregulating tumor suppressor gene FBXW7. Oncotarget. 2013;4:2476-86.doi: 10.18632/oncotarget.1581.
- Liu Y, Teng L, Fu S, Wang G, Li Z, Ding C, et al. Highly heterogeneous-related genes of triple-negative breast cancer: potential diagnostic and prognostic biomarkers. BMC Cancer. 2021;21:644.doi: 10.1186/s12885-021-08318-1.
- da Silva JL, Cardoso Nunes NC, Izetti P, de Mesquita GG, de Melo AC. Triple negative breast cancer: A thorough review of biomarkers. Crit Rev Oncol Hematol. 2020;145:102855. doi: 10.1016/j.critrevonc.2019.102855.
- Ru-DongLi, QianWangBin, ChengYin. Enzyme-free detection of sequencespecific microRNAs based on nanoparticle-assisted signal amplification strategy. Biosens Bioelectron. 2016;77:995-1000.doi: 10.1016/j.bios.2015.10.082.
- Lü L, Mao X, Shi P, He B, Xu K, Zhang S, et al. MicroRNAs in the prognosis of triple-negative breast cancer: A systematic review and meta-analysis. Medicine (Baltimore). 2017;96(22):e7085. doi: 10.1097/MD.0000000000007085.
- Malla RR, Kumari S, Gavara MM, Badana AK, Gugalavath S, Kumar DKG, et al. A perspective on the diagnostics, prognostics, and therapeutics of microRNAs of triple-negative breast cancer. Biophys Rev. 2019;11(2):227-34. doi: 10.1007/s12551-019-00503-8.
- Adams BD, Wali VB, Cheng CJ, Inukai S, Booth CJ, Agarwal S, et al. miR-34a silences c-SRC to attenuate tumor growth in triple-negative breast cancer. Cancer Res. 2016;76(4):927-39. doi: 10.1158/0008-5472.CAN-15-2321.
- Imani S, Wu RC, Fu J. MicroRNA-34 family in breast cancer: from research to therapeutic potential. J Cancer. 2018;9(20):3765-75. doi: 10.7150/jca.25576.
- Kim Y, Ko JY, Lee SB, Oh S, Park JW, Kang HG, et al. Reduced miR-371b-5p expression drives tumor progression via CSDE1/RAC1 regulation in triple-negative breast cancer. Oncogene. 2022;41:3151-61.doi: 10.1038/s41388-022-02326-6.
- Zhang K, Luo Z, Zhang Y, Song X, Zhang L, Wu L, et al. Long non-coding RNAs as novel biomarkers for breast cancer invasion and metastasis. Oncol Lett. 2017;14(2):1895-904. doi: 10.3892/ol.2017.6462.
- Sakthianandeswaren A, Liu S, Sieber OM. Long noncoding RNA LINP1: scaffolding non-homologous end joining. Cell Death Discov. 2016;2:16059. doi: 10.1038/cddiscovery.2016.59.
- Shi F, Xiao F, Ding P, Qin H, Huang R. Long noncoding RNA highly up-regulated in liver cancer predicts unfavorable outcome and regulates metastasis by MMPs in triple-negative breast cancer. Arch Med Res. 2016;47(6):446-53.doi: 10.1016/j.arcmed.2016.11.001.
- Bai X, Zhang S, Qiao J, Xing X, Li W, Zhang H, et al. Long non‑coding RNA SChLAP1 regulates the proliferation of triple negative breast cancer cells via the miR‑524‑5p/HMGA2 axis. Mol Med Rep. 2021;23(6):446. doi: 10.3892/mmr.2021.12085.
- Xiao MS, Ai Y, Wilusz JE. Biogenesis and functions of circular RNAs come into focus. Trends Cell Biol. 2020;30(3):226-40. doi: 10.1016/j.tcb.2019.12.004.
- Darbeheshti F, Zokaei E, Mansoori Y, Allahyari SE, Kamaliyan Z, Kadkhoda S, et al. Circular RNA hsa_circ_0044234 as distinct molecular signature of triple negative breast cancer: a potential regulator of GATA3. Cancer Cell Int. 2021;21:312.doi: 10.1186/s12935-021-02015-6.
- Yang SJ, Wang DD, Zhong SL, Chen WQ, Wang FL, Zhang J, et al. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/β-catenin (cyclin D1) axis. Cell Death Dis. 2021;12(5):420. doi: 10.1038/s41419-021-03680-1.
- Li L, Zheng X, Zhou Q, Villanueva N, Nian W, Liu X, et al. Metabolomics-based discovery of molecular signatures for triple negative breast cancer in Asian female population. Sci Rep. 2020;10(1):370. doi: 10.1038/s41598-019-57068-5.
- Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 2021;71(4):333-58. doi: 10.3322/caac.21670.
- Pralea IE, Moldovan RC, Țigu AB, Ionescu C, Iuga CA. Mass spectrometry-based omics for the characterization of triple-negative breast cancer bio-signature. J Pers Med. 2020;10(4):277. doi: 10.3390/jpm10040277.
- Beatty A, Fink LS, Singh T, Strigun A, Peter E, Ferrer CM, et al. Metabolite profiling reveals the glutathione biosynthetic pathway as a therapeutic target in triple-negative breast cancer. Mol Cancer Ther. 2018;17(1):264-75.doi: 10.1158/1535-7163.MCT-17-0407.
- Cao MD, Lamichhane S, Lundgren S, Bofin A, Fjøsne H, Giskeødegård GF, et al. Metabolic characterization of triple negative breast cancer. BMC Cancer. 2014;14:941.doi: 10.1186/1471-2407-14-941.
- Kanaan YM, Sampey BP, Beyene D, Esnakula AK, Naab TJ, Ricks-Santi LJ, et al. Metabolic profile of triple-negative breast cancer in African-American women reveals potential biomarkers of aggressive disease. Cancer Genomics Proteomics. 2014;11(6):279-94.
- Song Y, Zhao B, Xu Y, Ren X, Lin Y, Zhou L, et al. Prognostic significance of branched-chain amino acid transferase 1 and CD133 in triple-negative breast cancer. BMC Cancer. 2020;20:584.doi: 10.1186/s12885-020-07070-2.
- Kim JH, Jung SM, Shin JG, Cheong HS, Seo JM, Kim DY, et al. Potential association between ITPKC genetic variations and Hirschsprung disease. Mol Biol Rep. 2017;44:307-13.doi: 10.1007/s11033-017-4111-6.
- Oshi M, Newman S, Murthy V, Tokumaru Y, Yan L, Matsuyama R, et al. ITPKC as a prognostic and predictive biomarker of neoadjuvant chemotherapy for triple negative breast cancer. Cancers (Basel). 2020;12(10):2758. doi: 10.3390/cancers12102758.
- Gandhi S, Elkhanany A, Oshi M, Dai T, Opyrchal M, Mohammadpour H, et al. Contribution of immune cells to glucocorticoid receptor expression in breast cancer. Int J Mol Sci. 2020;21(13).doi: 10.3390/ijms21134635.
- Antonioli L, Blandizzi C, Malavasi F, Ferrari D, Haskób G. Anti-CD73 immunotherapy: a viable way to reprogram the tumor microenvironment. Oncoimmunology. 2016;5(9):e1216292.doi: 10.1080/2162402X.2016.1216292.
- Allard D, Turcotte M, Stagg J. Targeting A2 adenosine receptors in cancer. Immunol Cell Biol. 2017;95(4):333-9.doi: 10.1038/icb.2017.8.
- Buisseret L, Pommey S, Allard B, Garaud S, Bergeron M, Cousineau I, et al. Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase III clinical trial. Ann Oncol. 2018;29(4):1056-62. doi: 10.1093/annonc/mdx730.
- Dutta P, Sarkissyan M, Paico K, Wu Y, Vadgama JV. MCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasis. Breast Cancer Res Treat. 2018;170(3):477-86. doi: 10.1007/s10549-018-4760-8.
- Raghu G, Martinez FJ, Brown KK, Costabel U, Cottin V, Wells AU, et al. CC-chemokine ligand 2 inhibition in idiopathic pulmonary fibrosis: a phase 2 trial of carlumab. European Respiratory Journal. 2015; 46:1740-50. DOI:10.1183/13993003.01558-2014.
- Park G, Kim J. Myeloid differentiation primary response gene 88-leukotriene B4 receptor 2 cascade mediates lipopolysaccharide-potentiated invasiveness of breast cancer cells. Oncotarget. 2015;6:5749-59.doi: 10.18632/oncotarget.3304.
- Weng MS, Chang JH, Hung WY, Yang YC, Chien MH. The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J Exp Clin Cancer Res. 2018;37(1):61. doi: 10.1186/s13046-018-0728-0.
- Evani SJ, Prabhu RG, Gnanaruban V, Finol EA, Ramasubramanian AK. Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. FASEB J. 2013;27(8):3017-29. doi: 10.1096/fj.12-224824.
- Ilie SM, Bacinschi XE, Botnariuc I, Anghel RM. Potential clinically useful prognostic biomarkers in triple-negative breast cancer: preliminary results of a retrospective analysis. Breast Cancer (Dove Med Press). 2018;10:177-94. doi: 10.2147/BCTT.S175556.
- Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem.2001;276(21):18563-9.doi: 10.1074/jbc.M010787200.
- Witton CJ, Hawe SJK, Cooke TG, Bartlett JMS. Cyclooxygenase 2 (COX2) expression is associated with poor outcome in ER-negative, but not ER-positive, breast cancer. Histopathology. 2004;45(1):47-54.doi: 10.1111/j.1365-2559.2004.01898.x.
- Krishnamachary B, Stasinopoulos I, Kakkad S, Penet M-F, Jacob D, Wildes F, et al. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts. Oncotarget. 2017;8(11):17981-94.doi: 10.18632/oncotarget.
- Gharib F, Zamzam Y, Sad LM. Role of COX-2 inhibitors as maintenance therapy in non-metastatic triple negative breast cancer Egyptian patients, single institution study. Oncology and Radiotherapy. 2020;1(52):1-6.
- Nonneville Ad, ScilitPreprints, Finetti P, Adelaide J, Lambaudie É, Viens P, et al. A Tyrosine Kinase Expression Signature Predicts the Post-Operative Clinical Outcome in Triple Negative Breast Cancers. Cancers. 2019; 11(8): 1158.doi.org/10.3390/cancers11081158.
- M-Rabet M, Cabaud O, Josselin E, Finetti P, Castellano R, Farina A, et al. Nectin-4: a new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Ann Oncol. 2017;28(4):769-76. doi: 10.1093/annonc/mdw678.
- Zeindler J, Soysal SD, Piscuoglio S, Ng CKY, Mechera R, Isaak A, et al. Nectin-4 expression is an independent prognostic biomarker and associated with better survival in triple-negative breast cancer. Front Med (Lausanne). 2019;6:200. doi: 10.3389/fmed.2019.00200.
- Fathi E, Yarbro JM, Homayouni R. NIPSNAP protein family emerges as a sensor of mitochondrial health. Bioessays. 2021; 43(6): e2100014. doi: 10.1002/bies.202100014.
- Abudu YP, Pankiv S, Mathai BJ, Esguerra CV, Johansen T, Simonsen A. NIPSNAP1 and NIPSNAP2 Act as ‘‘Eat Me’’ Signals for Mitophagy. Developmental Cell. 2019; 49: 509-25. doi.org/10.1016/j.devcel.2019.03.013.
- Block CJ, Mitchell AV, Wu L, Glassbrook J, Craig D, Chen W, et al. RNA binding protein RBMS3 is a common EMT effector that modulates triple-negative breast cancer progression via stabilizing PRRX1 mRNA. Oncogene. 2021;40(46):1-13.doi: 10.1038/s41388-021-02030-x.
- Pilotte J, Kiosses W, Chan SW, Makarenkova HP, Dupont-Versteegden E, Vanderklish PW. Morphoregulatory functions of the RNA-binding motif protein 3 in cell spreading, polarity and migration. Sci Rep. 2018;8:7367.doi: 10.1038/s41598-018-25668-2.
- Auñon PZ, Adrián SG, Trilla-Fuertes L, Gámez-Pozo A, Prado-Vázquez G, Zapater-Moros A, et al. Abstract P3-08-42: Disease-free survival prognostic signature in triple-negative breast cancer based on high-throughput proteomics data. Cancer Res. 2020;80(4_Supplement):P3-08-42.doi:10.1158/1538-7445.SABCS19-P3-08-42.
- Wang Y, Lee YM, Baitsch L, Huang A, Xiang Y, Tong H, et al. MELK is an oncogenic kinase essential for mitotic progression in basal-like breast cancer cells. Elife. 2014;3:e01763. doi: 10.7554/eLife.01763. Erratum in: Elife. 2018;7.
- Speers C, Zhao SG, Kothari V, Santola A, Liu M, Wilder-Romans K, et al. Maternal embryonic leucine zipper kinase (MELK) as a novel mediator and biomarker of radioresistance in human breast cancer. Clin Cancer Res. 2016;22(23):5864-75. doi: 10.1158/1078-0432.CCR-15-2711.
- Kim SH, Joshi K, Ezhilarasan R, Myers TR, Siu J, Gu Cet al. EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner. Stem Cell Reports. 2015;4(2):226-38. doi: 10.1016/j.stemcr.2014.12.006.
- Speers C, Tsimelzon A, Sexton K, Herrick AM, Gutierrez C, Culhane A, et al. Identification of novel kinase targets for the treatment of estrogen receptornegative breast cancer Clin Cancer Res.2009;15:6327-40.doi: 10.1158/1078-0432.CCR-09-1107.
- Ji W, Arnst C, Tipton AR, Bekier ME 2nd, Taylor WR, Yen TJ, et al. OTSSP167 abrogates mitotic checkpoint through inhibiting multiple mitotic kinases. PLoS One. 2016;11(4):e0153518. doi: 10.1371/journal.pone.0153518.
- Moreno CS. MELK kinase holds promise as a new radiosensitizing target and biomarker in triple-negative breast cancer. J Thorac Dis. 2016;8(10):E1367-E8.doi: 10.21037/jtd.2016.10.40.
- Wang C, Gao C, Meng K, Qiao H, Wang Y. Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2. PLoS One. 2015;10(3):e0119348.doi:10.1371/journal.pone.0119348.
- Fleisher B, Clarke C, Ait-Oudhia S. Current advances in biomarkers for targeted therapy in triple-negative breast cancer. Breast Cancer (Dove Med Press). 2016;8:183-97. doi: 10.2147/BCTT.S114659.
- Martin JL, Silva HCd, Lin MZ, Scott CD, Baxter RC. Inhibition of insulin-like growth factor-binding protein-3 signaling through sphingosine kinase-1 sensitizes triple-negative breast cancer cells to EGF receptor blockade. Mol Cancer Ther. 2014;13(2):316-28.doi: 10.1158/1535-7163.MCT-13-0367.
- Hernandez BY, Wilkens LR, Marchand LL, Horio D, Chong CD, Loo LWM. Differences in IGF-axis protein expression and survival among multiethnic breast cancer patients. Cancer Med. 2015;4(3):354-62.doi: 10.1002/cam4.375.
- Ohi Y, Umekita Y, Yoshioka T, Souda M, Rai Y, Sagara Y, et al. Aldehyde dehydrogenase 1 expression predicts poor prognosis in triple-negative breast cancer. Histopathology.2011;59(4):776-80.doi: 10.1111/j.1365-2559.2011.03884.x.
- Kim SJ, Kim YS, Jang ED, Seo KJ, Kim JS. Prognostic impact and clinicopathological correlation of CD133 and ALDH1 expression in invasive breast cancer. J Breast Cancer. 2015;18(4):347-55.doi: 10.4048/jbc.2015.18.4.347.
|