- Narayanan N, Lengemann P, Kim KH, Kuang L, Sobreira T, Hedrick V, et al. Harnessing nerve-muscle cell interactions for biomaterials-based skeletal muscle regeneration. J Biomed Mater Res A. 2021;109:289-99. doi: 10.1002/jbm.a.37022. PubMed PMID: 32490576.
- Rodriguez Cruz PM, Cossins J, Beeson D, Vincent A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front Mol Neurosci. 2020;13:610964. doi: 10.3389/fnmol.2020.610964. PubMed PMID: 33343299; PubMed Central PMCID: PMCPMC7744297.
- Ausems CRM, van Engelen BGM, van Bokhoven H, Wansink DG. Systemic cell therapy for muscular dystrophies: The ultimate transplantable muscle progenitor cell and current challenges for clinical efficacy. Stem Cell Rev Rep. 2021;17:878-99. doi: 10.1007/s12015-020-10100-y. PubMed PMID: 33349909; PubMed Central PMCID: PMCPMC8166694.
- Liu N, Wang G, Zhen Y, Shang Y, Nie F, Zhu L, et al. Factors influencing myogenic differentiation of adipose-derived stem cells and their application in muscle regeneration. Chinese Journal of Plastic and Reconstructive Surgery. 2022;4:126-32. doi: 10.1016/j.cjprs.2022.06.006.
- Chen H, Li Z, Lin M, Lv X, Wang J, Wei Q, et al. MicroRNA-124-3p affects myogenic differentiation of adipose-derived stem cells by targeting Caveolin-1 during pelvic floor dysfunction in Sprague Dawley rats. Ann Transl Med. 2021;9:161. doi: 10.21037/atm-20-8212. PubMed PMID: 33569463; PubMed Central PMCID: PMCPMC7867888.
- Cai A, Schneider P, Zheng ZM, Beier JP, Himmler M, Schubert DW, et al. Myogenic differentiation of human myoblasts and Mesenchymal stromal cells under GDF11 on NPoly-varepsilon-caprolactone-collagen I-Polyethylene-nanofibers. BMC Mol Cell Biol. 2023;24:18. doi: 10.1186/s12860-023-00478-1. PubMed PMID: 37189080; PubMed Central PMCID: PMCPMC10184409.
- Cai A, Zheng ZM, Himmler M, Schubert DW, Fuchsluger TA, Weisbach V, et al. Schwann Cells Promote Myogenic Differentiation of Myoblasts and Adipogenic Mesenchymal Stromal Cells on Poly-varepsilon-Caprolactone-Collagen I-Nanofibers. Cells. 2022;11. doi: 10.3390/cells11091436. PubMed PMID: 35563742; PubMed Central PMCID: PMCPMC9100029.
- Arifuzzaman M, Ito A, Ikeda K, Kawabe Y, Kamihira M. Fabricating Muscle-Neuron Constructs with Improved Contractile Force Generation. Tissue Eng Part A. 2019;25:563-74. doi: 10.1089/ten.TEA.2018.0165. PubMed PMID: 30221587.
- Ostrovidov S, Ahadian S, Ramon-Azcon J, Hosseini V, Fujie T, Parthiban SP, et al. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. J Tissue Eng Regen Med. 2017;11:582-95. doi: 10.1002/term.1956. PubMed PMID: 25393357.
- Grassi F, Fucile S. Calcium influx through muscle nAChR-channels: One route, multiple roles. Neuroscience. 2020;439:117-24. doi: 10.1016/j.neuroscience.2019.04.011. PubMed PMID: 30999028.
- Hettwer S, Lin S, Kucsera S, Haubitz M, Oliveri F, Fariello RG, et al. Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction. PLoS One. 2014;9:e88739. doi: 10.1371/journal.pone.0088739. PubMed PMID: 24520420; PubMed Central PMCID: PMCPMC3919806.
- Xing R, Cheng X, Qi Y, Tian X, Yan C, Liu D, et al. Low-dose nicotine promotes autophagy of cardiomyocytes by upregulating HO-1 expression. Biochem Biophys Res Commun. 2020;522:1015-21. doi: 10.1016/j.bbrc.2019.11.086. PubMed PMID: 31813548.
- Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. Special Report: The 1996 Guide for the Care and Use of Laboratory Animals. ILAR J. 1997;38:41-8. doi: 10.1093/ilar.38.1.41. PubMed PMID: 11528046.
- Dayer D, Tabandeh MR, Moghimipour E, Hashemi Tabar M, Ghadiri A, Allah Bakhshi E, et al. MafA Overexpression: A New Efficient Protocol for In Vitro Differentiation of Adipose-Derived Mesenchymal Stem Cells into Functional Insulin-Producing Cells. Cell J. 2019;21:169-78. doi: 10.22074/cellj.2019.5669. PubMed PMID: 30825290; PubMed Central PMCID: PMCPMC6397604.
- Bayati V, Hashemitabar M, Gazor R, Nejatbakhsh R, Bijannejad D. Expression of surface markers and myogenic potential of rat bone marrow- and adipose-derived stem cells: a comparative study. Anat Cell Biol. 2013;46:113-21. doi: 10.5115/acb.2013.46.2.113. PubMed PMID: 23869258; PubMed Central PMCID: PMCPMC3713275.
- Wiatrak B, Kubis-Kubiak A, Piwowar A, Barg E. PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells. 2020;9. doi: 10.3390/cells9040958. PubMed PMID: 32295099; PubMed Central PMCID: PMCPMC7227003.
- Heidari-Moghadam A, Bayati V, Orazizadeh M, Rashno M. Role of Vascular Endothelial Growth Factor and Human Umbilical Vein Endothelial Cells in Designing An In Vitro Vascular-Muscle Cellular Model Using Adipose-Derived Stem Cells. Cell J. 2020;22:19-28. doi: 10.22074/cellj.2020.7034. PubMed PMID: 32779430; PubMed Central PMCID: PMCPMC7481900.
- Bai L, Tu WY, Xiao Y, Zhang K, Shen C. Motoneurons innervation determines the distinct gene expressions in multinucleated myofibers. Cell Biosci. 2022;12:140. doi: 10.1186/s13578-022-00876-6. PubMed PMID: 36042463; PubMed Central PMCID: PMCPMC9429338.
- Maacha S, Sidahmed H, Jacob S, Gentilcore G, Calzone R, Grivel JC, et al. Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells Int. 2020;2020:4356359. doi: 10.1155/2020/4356359. PubMed PMID: 32215017; PubMed Central PMCID: PMCPMC7085399
- Horner SJ, Couturier N, Bruch R, Koch P, Hafner M, Rudolf R. hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells. 2021;10. doi: 10.3390/cells10123292. PubMed PMID: 34943800; PubMed Central PMCID: PMCPMC8699767.
- Forcales SV. Potential of adipose-derived stem cells in muscular regenerative therapies. Front Aging Neurosci. 2015;7:123. doi: 10.3389/fnagi.2015.00123. PubMed PMID: 26217219; PubMed Central PMCID: PMCPMC4499759.
- Zhou Z, Zhao C, Cai B, Ma M, Kong S, Zhang J, et al. Myogenic differentiation potential of chicken mesenchymal stem cells from bone marrow. 2021. doi: 10.21203/rs.3.rs-847240/v1.
- Shirakawa T, Toyono T, Inoue A, Matsubara T, Kawamoto T, Kokabu S. Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells. 2022;11. doi: 10.3390/cells11091493. PubMed PMID: 35563799; PubMed Central PMCID: PMCPMC9104119.
- Patel S, Yin PT, Sugiyama H, Lee KB. Inducing Stem Cell Myogenesis Using NanoScript. ACS Nano. 2015;9:6909-17. doi: 10.1021/acsnano.5b00709. PubMed PMID: 26108385; PubMed Central PMCID: PMCPMC5808887.
- Osaki T, Wan Z, Kitajima S, Barbie DA, Gillrie MR, Kamm RD. Release of Motor Neuron Exosomes Containing TDP-43 and mTNF-α Near the Neuromuscular Junction Induces Skeletal Muscle Atrophy and Reduced Contractility in a 3D Human Model of ALS. Cell Press. doi: 10.2139/ssrn.3581364.
- Xue X, Liu B, Hu J, Bian X, Lou S. The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule. Nutr Metab (Lond). 2022;19:52. doi: 10.1186/s12986-022-00687-z. PubMed PMID: 35907984; PubMed Central PMCID: PMCPMC9338682.
- Forcina L, Miano C, Pelosi L, Musaro A. An Overview about the Biology of Skeletal Muscle Satellite Cells. Curr Genomics. 2019;20:24-37. doi: 10.2174/1389202920666190116094736. PubMed PMID: 31015789; PubMed Central PMCID: PMCPMC6446479.
- Voronova A, Yuzwa SA, Wang BS, Zahr S, Syal C, Wang J, et al. Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain. Neuron. 2017;94:500-16. doi: 10.1016/j.neuron.2017.04.018. PubMed PMID: 28472653.
- Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer’s disease research: PC12 cells. Front Mol Neurosci. 2022;15:1016559. doi: 10.3389/fnmol.2022.1016559. PubMed PMID: 36683856; PubMed Central PMCID: PMCPMC9846650.
- de Perini A, Dimauro I, Duranti G, Fantini C, Mercatelli N, Ceci R, et al. The p75(NTR)-mediated effect of nerve growth factor in L6C5 myogenic cells. BMC Res Notes. 2017;10:686. doi: 10.1186/s13104-017-2994-x. PubMed PMID: 29202822; PubMed Central PMCID: PMCPMC5716223.
- Morcuende S, Munoz-Hernandez R, Benitez-Temino B, Pastor AM, de la Cruz RR. Neuroprotective effects of NGF, BDNF, NT-3 and GDNF on axotomized extraocular motoneurons in neonatal rats. Neuroscience. 2013;250:31-48. doi: 10.1016/j.neuroscience.2013.06.050. PubMed PMID: 23827308.
- Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;11:1164-78. doi: 10.5114/aoms.2015.56342. PubMed PMID: 26788077; PubMed Central PMCID: PMCPMC4697050.
- Iberite F, Gruppioni E, Ricotti L. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. NPJ Regen Med. 2022;7:23. doi: 10.1038/s41536-022-00216-9. PubMed PMID: 35393412; PubMed Central PMCID: PMCPMC8991236.
- Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, et al. Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ. 2013;55:309-18. doi: 10.1111/dgd.12049. PubMed PMID: 23452121.
- Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017;72:19-32. doi: 10.1016/j.semcdb.2017.11.011. PubMed PMID: 29127046.
- Im GI. Bone marrow-derived stem/stromal cells and adipose tissue-derived stem/stromal cells: Their comparative efficacies and synergistic effects. J Biomed Mater Res A. 2017;105:2640-8. doi: 10.1002/jbm.a.36089. PubMed PMID: 28419760.
- Cao JQ, Liang YY, Li YQ, Zhang HL, Zhu YL, Geng J, et al. Adipose-derived stem cells enhance myogenic differentiation in the mdx mouse model of muscular dystrophy via paracrine signaling. Neural Regen Res. 2016;11:1638-43. doi: 10.4103/1673-5374.193244. PubMed PMID: 27904496; PubMed Central PMCID: PMCPMC5116844.
- Fang J, Chen F, Liu D, Gu F, Wang Y. Adipose tissue-derived stem cells in breast reconstruction: a brief review on biology and translation. Stem Cell Res Ther. 2021;12:8. doi: 10.1186/s13287-020-01955-6. PubMed PMID: 33407902; PubMed Central PMCID: PMCPMC7789635.
|