Background: Gliomas, as Central Nervous System (CNS) tumors, are greatly common with 80% of malignancy. Treatment methods for gliomas, such as surgery, radiation therapy, and chemotherapy depend on the grade, size, location, and the patient’s age. Objective: This study aimed to quantify glioma based on the radiomics analysis and classify its grade into High-grade Glioma (HGG) or Low-grade Glioma (LGG) by various machine-learning methods using contrast-enhanced brain Computerized Tomography (CT) scans. Material and Methods: This retrospective study involved acquiring and segmenting data, selecting and extracting features, classifying, analyzing, and evaluating classifiers. The study included a total of 62 patients (31 with LGG and 31 with HGG). The tumors were segmented by an experienced CT-scan technologist with 3D slicer software. A total of 14 shape features, 18 histogram-based features, and 75 texture-based features were computed. The Area Under the Curve (AUC) and Receiver Operating Characteristic Curve (ROC) were used to evaluate and compare classification models. Results: A total of 13 out of 107 features were selected to differentiate between LGGs and HGGs and to perform various classifier algorithms with different cross-validations. The best classifier algorithm was linear-discriminant with 93.5% accuracy, 96.77% sensitivity, 90.3% specificity, and 0.98% AUC in the differentiation of LGGs and HGGs. Conclusion: The proposed method can identify LGG and HGG with 93.5% accuracy, 96.77% sensitivity, 90.3% specificity, and 0.98% AUC, leading to the best treatment for glioma patients by using CT scans based on radiomics analysis. |
- Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol. 2015;17(Suppl 4):iv1-62. doi: 10.1093/neuonc/nov189. PubMed PMID: 26511214. PubMed PMCID: PMC4623240.
- Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol. 2019;21(Suppl 5):v1-100. doi: 10.1093/neuonc/noz150. PubMed PMID: 31675094. PubMed PMCID: PMC6823730.
- Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97-109. doi: 10.1007/s00401-007-0243-4. PubMed PMID: 17618441. PubMed PMCID: PMC1929165.
- Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803-20. doi: 10.1007/s00401-016-1545-1. PubMed PMID: 27157931.
- Wen PY, Reardon DA. Neuro-oncology in 2015: Progress in glioma diagnosis, classification and treatment. Nat Rev Neurol. 2016;12(2):69-70. doi: 10.1038/nrneurol.2015.242. PubMed PMID: 26782337.
- Coons SW, Johnson PC, Scheithauer BW, Yates AJ, Pearl DK. Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. 1997;79(7):1381-93. doi: 10.1002/(sici)1097-0142(19970401)79:7<1381::aid-cncr16>3.0.co;2-w. PubMed PMID: 9083161.
- Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. 2002;222(3):715-21. doi: 10.1148/radiol.2223010558. PubMed PMID: 11867790.
- Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, Johnson G. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol. 2004;25(5):746-55. PubMed PMID: 15140713. PubMed PMCID: PMC7974484.
- Mizobuchi Y, Nakajima K, Fujihara T, Matsuzaki K, Mure H, Nagahiro S, Takagi Y. The risk of hemorrhage in stereotactic biopsy for brain tumors. J Med Invest. 2019;66(3.4):314-8. doi: 10.2152/jmi.66.314. PubMed PMID: 31656296.
- Raab SS, Grzybicki DM, Janosky JE, Zarbo RJ, Meier FA, Jensen C, Geyer SJ. Clinical impact and frequency of anatomic pathology errors in cancer diagnoses. 2005;104(10):2205-13. doi: 10.1002/cncr.21431. PubMed PMID: 16216029.
- Davanian F, Faeghi F, Shahzadi S, Farshifar Z. Diffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index. Basic Clin Neurosci. 2017;8(1):13-8. doi: 10.15412/J.BCN.03080102. PubMed PMID: 28446945. PubMed PMCID: PMC5396168.
- Hakyemez B, Erdogan C, Ercan I, Ergin N, Uysal S, Atahan S. High-grade and low-grade gliomas: differentiation by using perfusion MR imaging. Clin Radiol. 2005;60(4):493-502. doi: 10.1016/j.crad.2004.09.009. PubMed PMID: 15767107.
- Kousi E, Tsougos I, Tsolaki E, Fountas KN, Theodorou K, Fezoulidis I, et al. Spectroscopic evaluation of glioma grading at 3T: the combined role of short and long TE. Scientific World Journal. 2012;2012:546171. doi: 10.1100/2012/546171. PubMed PMID: 22919334. PubMed PMCID: PMC3417198.
- Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006. doi: 10.1038/ncomms5006. PubMed PMID: 24892406. PubMed PMCID: PMC4059926.
- Ditmer A, Zhang B, Shujaat T, Pavlina A, Luibrand N, Gaskill-Shipley M, Vagal A. Diagnostic accuracy of MRI texture analysis for grading gliomas. J Neurooncol. 2018;140(3):583-9. doi: 10.1007/s11060-018-2984-4. PubMed PMID: 30145731.
- Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. 2016;278(2):563-77. doi: 10.1148/radiol.2015151169. PubMed PMID: 26579733. PubMed PMCID: PMC4734157.
- Stadler KL, Ruth JD, Pancotto TE, Werre SR, Rossmeisl JH. Computed Tomography and Magnetic Resonance Imaging Are Equivalent in Mensuration and Similarly Inaccurate in Grade and Type Predictability of Canine Intracranial Gliomas. Front Vet Sci. 2017;4:157. doi: 10.3389/fvets.2017.00157. PubMed PMID: 28993810. PubMed PMCID: PMC5622299.
- Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER, Davatzikos C. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med. 2009;62(6):1609-18. doi: 10.1002/mrm.22147. PubMed PMID: 19859947. PubMed PMCID: PMC2863141.
- Bonte S, Goethals I, Van Holen R. Individual prediction of brain tumor histological grading using radiomics on structural MRI. In: 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC); Atlanta, GA, USA: IEEE; 2017. p. 1-3.
- Zhang Z, Xiao J, Wu S, Lv F, Gong J, Jiang L, Yu R, Luo T. Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades. J Digit Imaging. 2020;33(4):826-37. doi: 10.1007/s10278-020-00322-4. PubMed PMID: 32040669. PubMed PMCID: PMC7522150.
|