- Seo JO, Yumnam S, Jeong KW, Kim SY. Finasteride inhibits melanogenesis through regulation of the adenylate cyclase in melanocytes and melanoma cells. J Arch Pharm. Res. 2018;41:324-32. doi: 10.1007/s12272-018-1002-x. PubMed PMID: 29397551. PubMed PMCID: PMC5859039.
- Nielsen KP, Juzeniene A, Juzenas P, Stamnes K, Stamnes JJ, Moan J. Choice of optimal wavelength for PDT: the significance of oxygen depletion. J Photochem Photobiol. 2005;81(5):1190-4. doi: 10.1562/2005-04-06-RA-478. PubMed PMID: 15934793.
- Shibaguchi H, Tsuru H, Kuroki M, Kuroki M. Sonodynamic cancer therapy: a non-invasive and repeatable approach using low-intensity ultrasound with a sonosensitizer. J Anticancer Res. 2011;31(7):2425-9. PubMed PMID: 21873154.
- Tachibana K, Feril Jr LB, Ikeda-Dantsuji Y. Sonodynamic therapy. 2008;48(4):253-9. doi: 10.1016/j.ultras.2008.02.003. PubMed PMID: 18433819.
- Serpe L, Foglietta F, Canaparo R. Nanosonotechnology: the next challenge in cancer sonodynamic therapy. J Nanotechnol Rev. 2012;1(2):173-82. doi: 10.1515/ntrev-2011-0009.
- McHale AP, Callan JF, Nomikou N, Fowley C, Callan B. Sonodynamic therapy: concept, mechanism and application to cancer treatment. Adv Exp Med Biol. 2016:429-50. doi: 10.1007/978-3-319-22536-4_22. PubMed PMID: 26486350.
- Rosenthal I, Sostaric JZ, Riesz P. Sonodynamic therapy––a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem. 2004;11(6):349-63. doi: 10.1016/j.ultsonch.2004.03.004. PubMed PMID: 15302020.
- Rengeng L, Qianyu Z, Yuehong L, Zhongzhong P, Libo L. Sonodynamic therapy, a treatment developing from photodynamic therapy. J Photodiagnosis Photodyn Ther. 2017;19:159-66. doi: 10.1016/j.pdpdt.2017.06.003. PubMed PMID: 28606724.
- Sun H, Ge W, Gao X, Wang S, Jiang S, Hu Y, et al. Apoptosis-promoting effects of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on endometrial cancer. PloS One. 2015;10(9):e0137980. doi: 10.1371/journal.pone.0137980. PubMed PMID: 26367393. PubMed PMCID: PMC4569302.
- Kuroki M, Hachimine K, Abe H, Shibaguchi H, Kuroki M, Maekawa SI, et al. Sonodynamic therapy of cancer using novel sonosensitizers. J Anticancer Res. 2007;27(6A):3673-7.
- Fan H, Yan G, Zhao Z, Hu X, Zhang W, Liu H, et al. A smart photosensitizer–manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells. Angew Chem Int Ed Engl. 2016;55(18):5477-82. doi: 10.1002/anie.201510748. PubMed PMID: 27010667. PubMed PMCID: PMC4971833.
- Perota G, Zahraie N, Vais RD, Zare M, Sattarahmady N. Au/TiO2 nanocomposite as a triple-sensitizer for 808 and 650 nm phototherapy and sonotherapy: Synergistic therapy of melanoma cancer in vitro. J Drug Deliv Sci Technol. 2022;76:103787. doi: 10.1016/j.jddst.2022.103787.
- Zahraie N, Perota G, Vais RD, Sattarahmady N. Simultaneous chemotherapy/sonodynamic therapy of the melanoma cancer cells using a gold-paclitaxel nanostructure. Photodiagnosis Photodyn Ther. 2022;39:102991. doi: 10.1016/j.pdpdt.2022.102991. PubMed PMID: 35779857.
- Osminkina L, Kudryavtsev A, Zinovyev S, Sviridov A, Kargina YV, Tamarov K, et al. Silicon nanoparticles as amplifiers of the ultrasonic effect in sonodynamic therapy. Bull Exp Biol Med. 2016;161(2):296. doi: 10.1007/s10517-016-3399-x. PubMed PMID: 27388631.
- You DG, Deepagan V, Um W, Jeon S, Son S, Chang H, et al. ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci Rep. 2016;6(1):23200. doi: 10.1038/srep23200. PubMed PMID: 26996446. PubMed PMCID: PMC4800401.
- Guo Z, Yu Y, Shi L, Liao Y, Wang Z, Liu X, et al. Defect engineering triggers exceptional sonodynamic activity of manganese oxide nanoparticles for cancer therapy. ACS Appl Bio Mater. 2022;5(9):4232-43. doi: 10.1021/acsabm.2c00445. PubMed PMID: 35952652.
- Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. 2013;10:1-33. doi: 10.1186/1743-8977-10-15. PubMed PMID: 23587290. PubMed PMCID: PMC3637140.
- Liu L, Miao P, Xu Y, Tian Z, Zou Z, Li G. Study of Pt/TiO2 nanocomposite for cancer-cell treatment. J Photochem Photobiol B. 2010;98(3):207-10. doi: 10.1016/j.jphotobiol.2010.01.005. PubMed PMID: 20149675.
- Yamaguchi S, Kobayashi H, Narita T, Kanehira K, Sonezaki S, Kudo N, et al. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy. Ultrason Sonochem. 2011;18(5):1197-204. doi: 10.1016/j.ultsonch.2010.12.017. PubMed PMID: 21257331.
- Kim D, Yu MK, Lee TS, Park JJ, Jeong YY, Jon S. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology. 2011;22(15):155101. doi: 10.1088/0957-4484/22/15/155101. PubMed PMID: 21389582.
- Smith L, Kuncic Z, Ostrikov K, Kumar S. Nanoparticles in cancer imaging and therapy. J Nanomater. 2012;2012:1-7. doi: 10.1155/2012/891318.
- Yurt F, Ocakoglu K, Ince M, Colak SG, Er O, Soylu HM, et al. Photodynamic therapy and nuclear imaging activities of zinc phthalocyanine‐integrated TiO2 nanoparticles in breast and cervical tumors. Chem Biol Drug Des. 2018;91(3):789-96. doi: 10.1111/cbdd.13144. PubMed PMID: 29136341.
- Ozawa K, Emori M, Yamamoto S, Yukawa R, Yamamoto S, Hobara R, et al. Electron–hole recombination time at TiO2 single-crystal surfaces: Influence of surface band bending. J Phys Chem Lett. 2014;5(11):1953-7. doi: 10.1021/jz500770c. PubMed PMID: 26273879.
- Deepagan V, You DG, Um W, Ko H, Kwon S, Choi KY, et al. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett. 2016;16(10):6257-64. doi: 10.1021/acs.nanolett.6b02547. PubMed PMID: 27643533.
- Negahdary M, Heli H. An electrochemical troponin I peptisensor using a triangular icicle-like gold nanostructure. Biochem Eng J. 2019;151:107326. doi: 10.1016/j.bej.2019.107326.
- Heli H, Amirizadeh O. Non-enzymatic glucose biosensor based on hyperbranched pine-like gold nanostructure. Mater Sci Eng C Mater Biol Appl. 2016;63:150-4. doi: 10.1016/j.msec.2016.02.068. PubMed PMID: 27040206.
- Negahdary M, Heli H. An electrochemical peptide-based biosensor for the Alzheimer biomarker amyloid-β (1–42) using a microporous gold nanostructure. Mikrochim Acta. 2019;186:1-8. doi: 10.1007/s00604-019-3903-x. PubMed PMID: 31713687.
- Vais RD, Karimian K, Heli H. Electrooxidation and amperometric determination of vorinostat on hierarchical leaf-like gold nanolayers. 2018;178:704-9. doi: 10.1016/j.talanta.2017.10.001. PubMed PMID: 29136884.
- Vais RD, Heli H, Sattarahmady N. Label-free electrochemical DNA biosensing of MR TV 29 18s ribosomal RNA gene of Trichomonas vaginalis by signalization of non-spherical gold nanoparticles. Mater Today Commun. 2023;34:105123. doi: 10.1016/j.mtcomm.2022.105123.
- Heidari M, Sattarahmady N. A review on application of gold nanostructures in cancer therapy. Basic & Clinical Cancer Res. 2015;7(2&3):32-6.
- Tuziuti T, Yasui K, Sivakumar M, Iida Y, Miyoshi N. Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J Phys Chem A. 2005;109(21):4869-72. doi: 10.1021/jp0503516. PubMed PMID: 16833832.
- Kayani Z, Vais RD, Soratijahromi E, Mohammadi S, Sattarahmady N. Curcumin-gold-polyethylene glycol nanoparticles as a nanosensitizer for photothermal and sonodynamic therapies: In vitro and animal model studies. Photodiagnosis Photodyn Ther. 2021;33:102139. doi: 10.1016/j.pdpdt.2020.102139. PubMed PMID: 33310015.
- Malekzadeh R, Ghorbani M, Faghani P, Abdollahi BB, Mortezazadeh T, Farhood B. Fabrication of targeted gold nanoparticle as potential contrast agent in molecular CT imaging. J Radiat Res Appl Sc. 2023;16(1):100490. doi: 10.1016/j.jrras.2022.100490.
- Abdulla-Al-Mamun M, Kusumoto Y, Zannat T, Islam MS. Synergistic enhanced photocatalytic and photothermal activity of Au@TiO2 nanopellets against human epithelial carcinoma cells. Phys Chem Chem Phys. 2011;13(47):21026-34. doi: 10.1039/c1cp22683e. PubMed PMID: 22011673.
- Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505-15. doi: 10.1021/mp800051m. PubMed PMID: 18672949. PubMed PMCID: PMC2663893.
- Gao F, He G, Yin H, Chen J, Liu Y, Lan C, et al. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window. Nanoscale. 2019;11(5):2374-84. doi: 10.1039/c8nr07188h. PubMed PMID: 30667014.
- Martins YA, Fonseca MJ, Pavan TZ, Lopez RF. Bifunctional therapeutic application of low-frequency ultrasound associated with zinc phthalocyanine-loaded micelles. Int J Nanomedicine. 2020:8075-95. doi: 10.2147/IJN.S264528. PubMed PMID: 33116519. PubMed PMCID: PMC7586016.
- Hao D, Song Y, Che Z, Liu Q. Calcium overload and in vitro apoptosis of the C6 glioma cells mediated by sonodynamic therapy (hematoporphyrin monomethyl ether and ultrasound). Cell Biochem Biophys. 2014;70(2):1445-52. doi: 10.1007/s12013-014-0081-7. PubMed PMID: 25158863. PubMed PMCID: PMC4182584.
- Rezaei M, Samani RK, Kazemi M, Shanei A, Hejazi S. Induction of a bystander effect after therapeutic ultrasound exposure in human melanoma: In-vitro assay. Int J Radiat Res. 2021;19(1):183-9. doi: 10.18869/acadpub.ijrr.19.1.183.
- He Y, Wan J, Yang Y, Yuan P, Yang C, Wang Z, et al. Multifunctional polypyrrole‐coated mesoporous TiO2 nanocomposites for photothermal, sonodynamic, and chemotherapeutic treatments and dual‐modal ultrasound/photoacoustic imaging of tumors. Adv Healthc Mater. 2019;8(9):e1801254. doi: 10.1002/adhm.201801254. PubMed PMID: 30844136.
- Bohari SP, Aboulkheyr H, Nur E, Johan S, Zianudin N. Low intensity ultrasound induced apoptosis in MCF-7 breast cancer cell lines. Sains Malays. 2017;46(4):575-81. doi: 10.17576/jsm-2017-4604-09.
- Sengupta S, Balla VK. A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment. J Adv Res. 2018;14:97-111. doi: 10.1016/j.jare.2018.06.003. PubMed PMID: 30109147. PubMed PMCID: PMC6090088.
- Wang JE, Liu YH, Liu LB, Xia CY, Zhang Z, Xue YX. Effects of combining low frequency ultrasound irradiation with papaverine on the permeability of the blood–tumor barrier. J Neurooncol. 2011;102:213-24. doi: 10.1007/s11060-010-0321-7. PubMed PMID: 20683758.
- Xu S, Zhou Z, Zhang L, Yu Z, Zhang W, Wang Y, et al. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res J. 2010;1311:189-96. doi: 10.1016/j.brainres.2009.10.062. PubMed PMID: 19879861.
- Trendowski M. Using the promise of sonodynamic therapy in the clinical setting against disseminated cancers. Chemother Res Pract. 2015;2015:316015. doi: 10.1155/2015/316015. PubMed PMID: 26380110. PubMed PMCID: PMC4562321.
- Madanshetty SI, Apfel RE. Acoustic microcavitation: Enhancement and applications. J Acoust Soc Am. 1991;90(3):1508-14. doi: 10.1121/1.401890. PubMed PMID: 1939907.
- Clement G. Perspectives in clinical uses of high-intensity focused ultrasound. 2004;42(10):1087-93. doi: 10.1016/j.ultras.2004.04.003. PubMed PMID: 15234170.
- Xu T, Zhao S, Lin C, Zheng X, Lan M. Recent advances in nanomaterials for sonodynamic therapy. Nano Res. 2020;13:2898-908. doi: 10.1007/s12274-020-2992-5.
- Ismail AA, Bahnemann DW. Mesostructured Pt/TiO2 nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid. J Phys Chem C. 2011;115(13):5784-91. doi: 10.1021/jp110959b.
- Murdoch M, Waterhouse G, Nadeem M, Metson J, Keane M, Howe R, et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat Chem. 2011;3(6):489-92. doi: 10.1038/nchem.1048. PubMed PMID: 21602866.
- Ola O, Maroto-Valer MM. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J Photochem Photobiol C. 2015;24:16-42. doi: 10.1016/j.jphotochemrev.2015.06.001.
|