تعداد نشریات | 20 |
تعداد شمارهها | 1,121 |
تعداد مقالات | 10,276 |
تعداد مشاهده مقاله | 42,999,182 |
تعداد دریافت فایل اصل مقاله | 9,411,427 |
Utilizing Artificial Intelligence for the Diagnosis, Assessment, and Management of Chronic Pain | ||
Journal of Biomedical Physics and Engineering | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 21 آذر 1402 اصل مقاله (547.34 K) | ||
نوع مقاله: Review Article | ||
شناسه دیجیتال (DOI): 10.31661/jbpe.v0i0.2306-1629 | ||
نویسندگان | ||
Habib Zakeri1؛ Mohammad Radmehr1؛ Farnaz Khademi1؛ Pegah Pedramfard1؛ Leala Montazeri1؛ Mahshid Ghanaatpisheh2؛ Behnam Rahnama1؛ Parisa Mahdiyar1؛ Saba Moalemi1؛ Farnaz Hemati1؛ Aliasghar Karimi* 1 | ||
1Research Center for Neuromodulation and Pain, NAB Pain Clinic, Shiraz University of Medical Sciences, Shiraz, Iran | ||
2Medis Holding, Shiraz, Iran | ||
چکیده | ||
Chronic pain is a prevalent condition and the leading cause of work absenteeism worldwide. This condition involves persistent pain lasting more than three months, significantly impacting the quality of life and social interactions of patients. While the causes of chronic pain can often remain unknown, no definitive cure exists for the various known causes. Furthermore, the evaluation and prediction of pain can be challenging, particularly in unconscious patients receiving care in the intensive care unit. Subjective measures and traditional methods are typically employed for diagnosis, assessment, and treatment to identify the most effective approach. However, recent advancements in Artificial Intelligence (AI) and other computer science fields have revolutionized the medical domain, offering a novel and promising avenue for enhancing pain management. This review provides an overview of the potential benefits, limitations, and prospects associated with the role of AI in the diagnosis, assessment, and management of chronic pain. | ||
کلیدواژهها | ||
Artificial Intelligence؛ Machine Learning؛ Artificial Neural Networks؛ Deep Learning؛ Pain Management؛ Pain Assessment | ||
آمار تعداد مشاهده مقاله: 162,447 تعداد دریافت فایل اصل مقاله: 230 |