- Magliano DJ, Boyko EJ. IDF Diabetes Atlas 10th ed. Brussels: International Diabetes Federation; 2021.
- da Silva Almeida R, de Melo RC, Chaves MSS, Baptista GM, Margotto SS, de Oliveira Andrade LJ. Diabetic pneumopathy. Brazilian Journal of Medicine and Human Health (inactive/archive only). 2016;4. doi: 10.17267/2317-3386bjmhh.v4i1.791.
- Rajasurya V, Gunasekaran K, Surani S. Interstitial lung disease and diabetes. World J Diabetes. 2020;11:351-7. doi: 10.4239/wjd.v11.i8.351. PubMed PMID: 32864047; PubMed Central PMCID: PMCPMC7438183.
- Wang D, Ma Y, Tong X, Zhang Y, Fan H. Diabetes Mellitus Contributes to Idiopathic Pulmonary Fibrosis: A Review From Clinical Appearance to Possible Pathogenesis. Front Public Health. 2020;8:196. doi: 10.3389/fpubh.2020.00196. PubMed PMID: 32582606; PubMed Central PMCID: PMCPMC7285959.
- Hamdy G, Amin M, Rashad A. Pulmonary function changes in diabetic lung. Egyptian Journal of Chest Diseases and Tuberculosis. 2013;62:513-7. doi: 10.1016/j.ejcdt.2013.07.006.
- Schuyler MR, Niewoehner DE, Inkley SR, Kohn R. Abnormal lung elasticity in juvenile diabetes mellitus. Am Rev Respir Dis. 1976;113:37-41. doi: 10.1164/arrd.1976.113.1.37. PubMed PMID: 1247213.
- Talakatta G, Sarikhani M, Muhamed J, Dhanya K, Somashekar BS, Mahesh PA, et al. Diabetes induces fibrotic changes in the lung through the activation of TGF-beta signaling pathways. Sci Rep. 2018;8:11920. doi: 10.1038/s41598-018-30449-y. PubMed PMID: 30093732; PubMed Central PMCID: PMCPMC6085305.
- Bai L, Zhang L, Pan T, Wang W, Wang D, Turner C, et al. Idiopathic pulmonary fibrosis and diabetes mellitus: a meta-analysis and systematic review. Respir Res. 2021;22:175. doi: 10.1186/s12931-021-01760-6. PubMed PMID: 34103046; PubMed Central PMCID: PMCPMC8188656.
- Rout-Pitt N, Farrow N, Parsons D, Donnelley M. Epithelial mesenchymal transition (EMT): a universal process in lung diseases with implications for cystic fibrosis pathophysiology. Respir Res. 2018;19:136. doi: 10.1186/s12931-018-0834-8. PubMed PMID: 30021582; PubMed Central PMCID: PMCPMC6052671.
- Wuyts WA, Agostini C, Antoniou KM, Bouros D, Chambers RC, Cottin V, et al. The pathogenesis of pulmonary fibrosis: a moving target. Eur Respir J. 2013;41:1207-18. doi: 10.1183/09031936.00073012. PubMed PMID: 23100500.
- Nicholas SB. Novel Anti-inflammatory and Anti-fibrotic Agents for Diabetic Kidney Disease-From Bench to Bedside. Adv Chronic Kidney Dis. 2021;28:378-90. doi: 10.1053/j.ackd.2021.09.010. PubMed PMID: 34922694.
- Mummidi S, Das NA, Carpenter AJ, Kandikattu H, Krenz M, Siebenlist U, et al. Metformin inhibits aldosterone-induced cardiac fibroblast activation, migration and proliferation in vitro, and reverses aldosterone+salt-induced cardiac fibrosis in vivo. J Mol Cell Cardiol. 2016;98:95-102. doi: 10.1016/j.yjmcc.2016.07.006. PubMed PMID: 27423273.
- Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018;24:1121-7. doi: 10.1038/s41591-018-0087-6. PubMed PMID: 29967351; PubMed Central PMCID: PMCPMC6081262.
- Liang N, Kitts DD. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients. 2015;8. doi: 10.3390/nu8010016. PubMed PMID: 26712785; PubMed Central PMCID: PMCPMC4728630.
- Ong KW, Hsu A, Tan BK. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem Pharmacol. 2013;85:1341-51. doi: 10.1016/j.bcp.2013.02.008. PubMed PMID: 23416115.
- Shi H, Dong L, Jiang J, Zhao J, Zhao G, Dang X, et al. Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway. Toxicology. 2013;303:107-14. doi: 10.1016/j.tox.2012.10.025. PubMed PMID: 23146752.
- Yunus J, Salman M, Lintin GBR, Muchtar M, Sari DCR, Arfian N, et al. Chlorogenic acid attenuates kidney fibrosis via antifibrotic action of BMP-7 and HGF. Med J Malaysia. 2020;75:5-9. PubMed PMID: 32471962.
- Wang YC, Dong J, Nie J, Zhu JX, Wang H, Chen Q, et al. Amelioration of bleomycin-induced pulmonary fibrosis by chlorogenic acid through endoplasmic reticulum stress inhibition. Apoptosis. 2017;22:1147-56. doi: 10.1007/s10495-017-1393-z. PubMed PMID: 28677092.
- Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412. doi: 10.1371/journal.pbio.1000412. PubMed PMID: 20613859; PubMed Central PMCID: PMCPMC2893951.
- Soliman ME. Evaluation of Time Dependent Changes of the Rat’s Lung in Experimentally Induced Diabetes Mellitus: Light and Electron Microscopic Study. Egyptian Journal of Histology. 2010;33:45-54. doi: 10.1097/00767537-201003000-00006.
- Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, et al. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front Endocrinol (Lausanne). 2022;13:800714. doi: 10.3389/fendo.2022.800714. PubMed PMID: 35282429; PubMed Central PMCID: PMCPMC8907382.
- Bagdas D, Etoz BC, Gul Z, Ziyanok S, Inan S, Turacozen O, et al. In vivo systemic chlorogenic acid therapy under diabetic conditions: Wound healing effects and cytotoxicity/genotoxicity profile. Food Chem Toxicol. 2015;81:54-61. doi: 10.1016/j.fct.2015.04.001. PubMed PMID: 25846499.
- Bagdas D, Cam Etoz B, Inan Ozturkoglu S, Cinkilic N, Ozyigit MO, Gul Z, et al. Effects of systemic chlorogenic acid on random-pattern dorsal skin flap survival in diabetic rats. Biol Pharm Bull. 2014;37:361-70. doi: 10.1248/bpb.b13-00635. PubMed PMID: 24389556.
- Eizirik DL, Pasquali L, Cnop M. Pancreatic beta-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol. 2020;16:349-62. doi: 10.1038/s41574-020-0355-7. PubMed PMID: 32398822.
- Saito A, Horie M, Nagase T. TGF-beta Signaling in Lung Health and Disease. Int J Mol Sci. 2018;19. doi: 10.3390/ijms19082460. PubMed PMID: 30127261; PubMed Central PMCID: PMCPMC6121238.
- Bagdas D, Gul NY, Topal A, Tas S, Ozyigit MO, Cinkilic N, et al. Pharmacologic overview of systemic chlorogenic acid therapy on experimental wound healing. Naunyn Schmiedebergs Arch Pharmacol. 2014;387:1101-16. doi: 10.1007/s00210-014-1034-9. PubMed PMID: 25129377.
- Chu KO, Chan SO, Pang CP, Wang CC. Pro-oxidative and antioxidative controls and signaling modification of polyphenolic phytochemicals: contribution to health promotion and disease prevention? J Agric Food Chem. 2014;62:4026-38. doi: 10.1021/jf500080z. PubMed PMID: 24779775.
- Leon-Gonzalez AJ, Auger C, Schini-Kerth VB. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol. 2015;98:371-80. doi: 10.1016/j.bcp.2015.07.017. PubMed PMID: 26206193.
- Maurya DK, Devasagayam TP. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem Toxicol. 2010;48:3369-73. doi: 10.1016/j.fct.2010.09.006. PubMed PMID: 20837085.
- Murakami A. Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Arch Biochem Biophys. 2014;557:3-10. doi: 10.1016/j.abb.2014.04.018. PubMed PMID: 24814373.
- Robaszkiewicz A, Balcerczyk A, Bartosz G. Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol Int. 2007;31:1245-50. doi: 10.1016/j.cellbi.2007.04.009. PubMed PMID: 17583542.
- Suh KS, Chon S, Oh S, Kim SW, Kim JW, Kim YS, et al. Prooxidative effects of green tea polyphenol (-)-epigallocatechin-3-gallate on the HIT-T15 pancreatic beta cell line. Cell Biol Toxicol. 2010;26:189-99. doi: 10.1007/s10565-009-9137-7. PubMed PMID: 19757103.
- Upadhyay S, Dixit M. Role of Polyphenols and Other Phytochemicals on Molecular Signaling. Oxid Med Cell Longev. 2015;2015:504253. doi: 10.1155/2015/504253. PubMed PMID: 26180591; PubMed Central PMCID: PMCPMC4477245.
- Sotler R, Poljsak B, Dahmane R, Jukic T, Pavan Jukic D, Rotim C, et al. Prooxidant Activities of Antioxidants and Their Impact on Health. Acta Clin Croat. 2019;58:726-36. doi: 10.20471/acc.2019.58.04.20. PubMed PMID: 32595258; PubMed Central PMCID: PMCPMC7314298.
- Tam AYY, Horwell AL, Trinder SL, Khan K, Xu S, Ong V, et al. Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension. Int J Biochem Cell Biol. 2021;134:105961. doi: 10.1016/j.biocel.2021.105961. PubMed PMID: 33662577; PubMed Central PMCID: PMCPMC8111417.
- Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5:S24. doi: 10.1186/1755-1536-5-S1-S24. PubMed PMID: 23259531; PubMed Central PMCID: PMCPMC3368796.
- Qin L, Zang M, Xu Y, Zhao R, Wang Y, Mi Y, et al. Chlorogenic Acid Alleviates Hyperglycemia-Induced Cardiac Fibrosis through Activation of the NO/cGMP/PKG Pathway in Cardiac Fibroblasts. Mol Nutr Food Res. 2021;65:e2000810. doi: 10.1002/mnfr.202000810. PubMed PMID: 33200558.
- Wang Y, Yang F, Xue J, Zhou X, Luo L, Ma Q, et al. Antischistosomiasis Liver Fibrosis Effects of Chlorogenic Acid through IL-13/miR-21/Smad7 Signaling Interactions In Vivo and In Vitro. Antimicrob Agents Chemother. 2017;61. doi: 10.1128/AAC.01347-16. PubMed PMID: 27872076; PubMed Central PMCID: PMCPMC5278737.
- Yang F, Luo L, Zhu ZD, Zhou X, Wang Y, Xue J, et al. Chlorogenic Acid Inhibits Liver Fibrosis by Blocking the miR-21-Regulated TGF-beta1/Smad7 Signaling Pathway in Vitro and in Vivo. Front Pharmacol. 2017;8:929. doi: 10.3389/fphar.2017.00929. PubMed PMID: 29311932; PubMed Central PMCID: PMCPMC5742161.
- Hillege MMG, Galli Caro RA, Offringa C, de Wit GMJ, Jaspers RT, Hoogaars WMH. TGF-beta Regulates Collagen Type I Expression in Myoblasts and Myotubes via Transient Ctgf and Fgf-2 Expression. Cells. 2020;9. doi: 10.3390/cells9020375. PubMed PMID: 32041253; PubMed Central PMCID: PMCPMC7072622.
|