This study presents a mechanical model of a novel medical device designed to optimize the osseointegration process in upper and lower limb amputees, leading to the promotion of optimal rehabilitation. The medical device is developed to reduce the risk of implant failure, leading to re-amputation above the implant. The proposed model serves several purposes: 1) to guide the osseointegration process by providing electrical endo-stimulation directly to the bone-implant contact site, using an invasive electrical stimulation system, which is implanted in the bone permanently, 2) to locally transmit stem cells after implantation, without the need for opening the skin or perforating the bone, which is particularly useful for regenerative medicine after partial healing of the implant, 3) to transmit necessary nutrients from the bone, also without opening the skin or puncturing the bone, and 4) to combat infections by locally administering drugs after implantation. |
- Faoussi M, Youbi Y, Moussetad M, Wahbi M. Study of Different Orthopedic Implant for the Femoral Amputees. 2019;163(1):148-58.
- Sidhu SS, Singh H, Gepreel MA. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Mater Sci Eng C Mater Biol Appl. 2021;121:111661. doi: 10.1016/j.msec.2020.111661. PubMed PMID: 33579432.
- Verma RP. Titanium based biomaterial for bone implants: A mini review. Mater Today: Proc. 2020;26:3148-51. doi: 10.1016/j.matpr.2020.02.649.
- Branemark PI. Vital microscopy of bone marrow in rabbit. Scand J Clin Lab Invest. 1959;11(Supp 38):1-82. PubMed PMID: 13658913.
- Sundgren JE, Bodö P, Lundström I. Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel. J Colloid Interface Sci. 1986;110(1):9-20. doi: 10.1016/0021-9797(86)90348-6.
- Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC. Biology of implant osseointegration. J Musculoskelet Neuronal Interact. 2009;9(2):61-71. PubMed PMID: 19516081.
- Weivoda MM, Bradley EW. Macrophages and Bone Remodeling. J Bone Miner Res. 2023;38(3):359-69. doi: 10.1002/jbmr.4773. PubMed PMID: 36651575. PubMed PMCID: PMC10023335.
- Boyan BD, Cheng A, Olivares-Navarrete R, Schwartz Z. Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation. Adv Dent Res. 2016;28(1):10-7. doi: 10.1177/0022034515624444. PubMed PMID: 26927483. PubMed PMCID: PMC4772337.
- Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1(1):11-25. PubMed PMID: 3527955.
- Bergamo ETP, Zahoui A, Barrera RB, Huwais S, Coelho PG, Karateew ED, Bonfante EA. Osseodensification effect on implants primary and secondary stability: Multicenter controlled clinical trial. Clin Implant Dent Relat Res. 2021;23(3):317-28. doi: 10.1111/cid.13007. PubMed PMID: 34047046. PubMed PMCID: PMC8362055.
- Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur J Oral Sci. 1998;106(1):527-51. doi: 10.1046/j.0909-8836..t01-2-.x. PubMed PMID: 9527353.
- Kotsakis GA, Romanos GE. Biological mechanisms underlying complications related to implant site preparation. Periodontol 2000. 2022;88(1):52-63. doi: 10.1111/prd.12410. PubMed PMID: 35103318.
- Li Y, Felländer-Tsai L. The bone anchored prostheses for amputees - Historical development, current status, and future aspects. 2021;273:120836. doi: 10.1016/j.biomaterials.2021.120836. PubMed PMID: 33894405.
- Implant orthopedique osteo-integre destine aux amputes femoraux a moignons courts. Patent MA41535A1; Espacenet; 2019.
- Goldstein C, Sprague S, Petrisor BA. Electrical stimulation for fracture healing: current evidence. J Orthop Trauma. 2010;24(Suppl 1):S62-5. doi: 10.1097/BOT.0b013e3181cdde1b. PubMed PMID: 20182239.
- Kuzyk PR, Schemitsch EH. The science of electrical stimulation therapy for fracture healing. Indian J Orthop. 2009;43(2):127-31. doi: 10.4103/0019-5413.50846. PubMed PMID: 19838360. PubMed PMCID: PMC2762253.
- Hronik-Tupaj M, Kaplan DL. A review of the responses of two- and three-dimensional engineered tissues to electric fields. Tissue Eng Part B Rev. 2012;18(3):167-80. doi: 10.1089/ten.TEB.2011.0244. PubMed PMID: 22046979. PubMed PMCID: PMC3357076.
- Leppik L, Oliveira KMC, Bhavsar MB, Barker JH. Electrical stimulation in bone tissue engineering treatments. Eur J Trauma Emerg Surg. 2020;46(2):231-44. doi: 10.1007/s00068-020-01324-1. PubMed PMID: 32078704. PubMed PMCID: PMC7113220.
- Dergin G, Akta M, Gürsoy B, Devecioglu Y, Kürkçü M, Benlidayi E. Direct current electric stimulation in implant osseointegration: an experimental animal study with sheep. J Oral Implantol. 2013;39(6):671-9. doi: 10.1563/AAID-JOI-D-10-00172. PubMed PMID: 22103684.
|