- Jamil N, Belkacem AN, Ouhbi S, Lakas A. Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain-Computer Interfaces: A Systematic Literature Review. Sensors (Basel). 2021;21(14):4754. doi: 10.3390/s21144754. PubMed PMID: 34300492. PubMed PMCID: PMC8309653.
- Amini Z, Abootalebi V, Sadeghi MT. A comparative study of feature extraction methods in P300 detection. 17th Iranian Conference of Biomedical Engineering (ICBME); Isfahan, Iran: IEEE; 2010. p. 1-4.
- Eastmond C, Subedi A, De S, Intes X. Deep learning in fNIRS: a review. 2022;9(4):041411. doi: 10.1117/1.NPh.9.4.041411. PubMed PMID: 35874933. PubMed PMCID: PMC9301871.
- Hasbulah MH, Jafar FA, Nordin MH. Fundamental of Electroencephalogram (EEG) Review for Brain-Computer Interface (BCI) System. Int Res J Eng Technol. 2019;6(5):1017-28.
- Kobler RJ, Hirata M, Hashimoto H, Dowaki R, Sburlea AI, Müller-Putz GR. Simultaneous decoding of velocity and speed during executed and observed tracking movements: an MEG study. 8th Graz Brain-Computer Interface Conference; Austria: Institute of Neural Engineering Graz BCI; 2019.
- Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng. 2019;16(1):011001. doi: 10.1088/1741-2552/aaf12e. PubMed PMID: 30523919.
- Kundu S, Ari S. Brain-Computer interface speller system for alternative communication: a review. IRBM. 2022;43(4):317-24. doi: 10.1016/j.irbm.2021.07.001.
- Shojaedini SV, Morabbi S, Keyvanpour MR. A New Method to Improve the Performance of Deep Neural Networks in Detecting P300 Signals: Optimizing Curvature of Error Surface Using Genetic Algorithm. J Biomed Phys Eng. 2021;11(3):357-66. doi: 10.31661/jbpe.v0i0.975. PubMed PMID: 34189124. PubMed PMCID: PMC8236098.
- Saliasi E, Geerligs L, Lorist MM, Maurits NM. The relationship between P3 amplitude and working memory performance differs in young and older adults. PLoS One. 2013;8(5):e63701. doi: 10.1371/journal.pone.0063701. PubMed PMID: 23667658. PubMed PMCID: PMC3646823.
- Li L, Gratton C, Yao D, Knight RT. Role of frontal and parietal cortices in the control of bottom-up and top-down attention in humans. Brain Res. 2010;1344:173-84. doi: 10.1016/j.brainres.2010.05.016. PubMed PMID: 20470762. PubMed PMCID: PMC2900444.
- Oralhan Z. A new paradigm for region-based P300 speller in brain computer interface. IEEE Access. 2019;7:106618-27. doi: 10.1109/ACCESS.2019.2933049.
- Li Y, Nam CS, Shadden BB, Johnson SL. A P300-based brain–computer interface: Effects of interface type and screen size. Int J Hum Comput Interact. 2010;27(1):52-68. doi: 10.1080/10447318.2011.535753.
- Fazel-Rezai R, Ahmad W. P300-based brain-computer interface paradigm design. In: Recent advances in brain-computer interface systems. InTech; 2011.
- Lu Y, Bi L. EEG signals-based longitudinal control system for a brain-controlled vehicle. IEEE Trans Neural Syst Rehabil Eng. 2018;27(2):323-32. 10.1109/TNSRE.2018.2889483.
- Zhang Z, Yu X, Rong X, Iwata M. Spatial-temporal neural network for P300 detection. IEEE Access. 2021;9:163441-55. doi: 10.1109/ACCESS.2021.3132024.
- Qu J, Wang F, Xia Z, Yu T, Xiao J, Yu Z, Gu Z, Li Y. A novel three-dimensional P300 speller based on stereo visual stimuli. IEEE Trans Human-Machine Syst. 2018;48(4):392-9. doi: 10.1109/THMS.2018.2799525.
- Kim M, Kim J, Heo D, Choi Y, Lee T, Kim SP. Effects of Emotional Stimulations on the Online Operation of a P300-Based Brain-Computer Interface. Front Hum Neurosci. 2021;15:612777. doi: 10.3389/fnhum.2021.612777. PubMed PMID: 33767615. PubMed PMCID: PMC7987063.
- Bulat M, Karpman A, Samokhina A, Panov A. Playing a P300-based BCI VR game leads to changes in cognitive functions of healthy adults [Internet]. bioRxiv [Preprint]. 2020 [cited 2020 May 30]. Available from: https://www.biorxiv.org/content/10.1101/2020.05.28.118281v3.
- Rasheed S. A review of the role of machine learning techniques towards brain–computer interface applications. Mach Learn Knowl Extr. 2021;3(4):835-62. doi: 10.3390/make3040042.
- Alzahab NA, Apollonio L, Di Iorio A, Alshalak M, Iarlori S, Ferracuti F, et al. Hybrid Deep Learning (hDL)-Based Brain-Computer Interface (BCI) Systems: A Systematic Review. Brain Sci. 2021;11(1):75. doi: 10.3390/brainsci11010075. PubMed PMID: 33429938. PubMed PMCID: PMC7827826.
- Zhang X, Yao L, Wang X, Monaghan J, McAlpine D, Zhang Y. A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J Neural Eng. 2021;18(3):031002. doi: 10.1088/1741-2552/abc902. PubMed PMID: 33171452.
- Cortez SA, Flores C, Andreu-Perez J. Single-trial p300 classification using deep belief networks for a bci system. In: 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON); Lima, Peru: IEEE: 2020. p. 1-4.
- Kshirsagar GB, Londhe ND. Improving Performance of Devanagari Script Input-Based P300 Speller Using Deep Learning. IEEE Trans Biomed Eng. 2019;66(11):2992-3005. doi: 10.1109/TBME.2018.2875024. PubMed PMID: 30307853.
- Liu M, Wu W, Gu Z, Yu Z, Qi F, Li Y. Deep learning based on batch normalization for P300 signal detection. 2018;275:288-97. doi: 10.1016/j.neucom.2017.08.039.
- Lu Z, Gao N, Liu Y, Li Q. The detection of p300 potential based on deep belief network. In: 2018 11th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI); Beijing, China: IEEE; 2018. p. 1-5.
- Shan H, Liu Y, Stefanov TP. A Simple Convolutional Neural Network for Accurate P300 Detection and Character Spelling in Brain Computer Interface. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18); IJCAI; 2018. p. 1604-10.
- Delgado JMC, Achanccaray D, Villota ER, Chevallier S. Riemann-Based Algorithms Assessment for Single- and Multiple-Trial P300 Classification in Non-Optimal Environments. IEEE Trans Neural Syst Rehabil Eng. 2020;28(12):2754-61. doi: 10.1109/TNSRE.2020.3043418. PubMed PMID: 33296306.
- Wu Q, Zhang Y, Liu J, Sun J, Cichocki A, Gao F. Regularized Group Sparse Discriminant Analysis for P300-Based Brain-Computer Interface. Int J Neural Syst. 2019;29(6):1950002. doi: 10.1142/S0129065719500023. PubMed PMID: 30880525.
- Bianchi L, Liti C, Liuzzi G, Piccialli V, Salvatore C. Improving P300 Speller performance by means of optimization and machine learning. Ann Oper Res. 2022;312:1221-59. doi: 10.1007/s10479-020-03921-0.
- Srimaharaj W, Chaisricharoen R. A novel processing model for P300 brainwaves detection. J Web Eng. 2021;20(8):2545-70. doi: 10.13052/jwe1540-9589.20815.
- He H, Bai Y, Garcia EA, Li S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence); Hong Kong: IEEE; 2008. p. 1322-8.
- Singari RM, Kankar PK, editors. Music Generation Using LSTM and Its Comparison with Traditional Method. In: Advanced Production and Industrial Engineering. IOS Press; 2022.
- Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8(1):53. doi: 10.1186/s40537-021-00444-8. PubMed PMID: 33816053. PubMed PMCID: PMC8010506..
- Yu J, Liu X, Ye L. Convolutional long short-term memory autoencoder-based feature learning for fault detection in industrial processes. IEEE Trans Instrum Meas. 2020;70:1-5. doi: 10.1109/TIM.2020.3039614.
- Sarraf J, Pattnaik PK. A study of classification techniques on P300 speller dataset. Mater Today Proc. 2023;80(3):2047-50. doi: 10.1016/j.matpr.2021.06.110.
- Ghazikhani H, Rouhani M. A deep neural network classifier for P300 BCI speller based on Cohen’s classtime-frequency distribution. Turkish J Electr Eng Comput Sci. 2021;29(2):1226-40. doi: 10.3906/elk-2005-201.
- Ditthapron A, Banluesombatkul N, Ketrat S, Chuangsuwanich E, Wilaiprasitporn T. Universal joint feature extraction for P300 EEG classification using multi-task autoencoder. IEEE Access. 2019;7:68415-28. doi: 10.1109/ACCESS.2019.2919143.
- Lee T, Kim M, Kim SP. Improvement of P300-Based Brain-Computer Interfaces for Home Appliances Control by Data Balancing Techniques. Sensors (Basel). 2020;20(19):5576. doi: 10.3390/s20195576. PubMed PMID: 33003367. PubMed PMCID: PMC7582676.
|