Background: The same conversion factors (k-factors) of Single CT (SECT) are applied to estimate the Effective Dose (ED) in Dual Energy Computed Tomography (DECT). However, k-factors for different organs need independently validating for DECT, due to the different conditions in DECT. Objective: This study aimed to calculate organ dose and k-factors in different imaging protocols (liver, chest, cardiac, and abdomen) for male and female phantoms. Material and Methods: This Monte Carlo Simulation study used Monte Carlo N-Particle (MCNP) code for modeling a Siemens Somatom Definition Flash dual-source CT scanner. The organ dose, dose length product, and k-factors were calculated for the Medical Internal Radiation Dose (MIRD) of male and female phantoms. Results: For the male phantom, the k-factors for the liver, chest, cardiac, and abdomen-pelvis imaging protocols are equal to 0.020, 0.012, 0.016, and 0.014 mSv.mGy−1cm−1, respectively. For the female phantom, the corresponding values are equal to 0.026, 0.023, 0.036, and 0.018, respectively. These values for DECT are different from those corresponding values for SECT, especially for the female phantom. Conclusion: The calculated k-factors for DECT can be used as reference values for the estimation of ED in DECT. |
- McCollough C, Cody D, Edyvean S, Geise R, Gould B, Keat N, et al. The measurement, reporting, and management of radiation dose in CT. Report of AAPM Task Group 23. American Association of Physicists in Medicine One Physics Ellipse; 2008.
- Valentin J, International Commission on Radiation Protection. Managing patient dose in multi-detector computed tomography(MDCT). ICRP Publication 102. Ann ICRP. 2007;37(1):1-79. doi: 10.1016/j.icrp.2007.09.001. PubMed PMID: 18069128.
- Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078-86. doi: 10.1001/archinternmed.2009.427. PubMed PMID: 20008690. PubMed PMCID: PMC4635397.
- Roele ED, Timmer VCML, Vaassen LAA, Van Kroonenburgh AMJL, Postma AA. Dual-Energy CT in Head and Neck Imaging. Curr Radiol Rep. 2017;5(5):19. doi: 10.1007/s40134-017-0213-0. PubMed PMID: 28435761. PubMed PMCID: PMC5371622.
- Lyu T, Zhao W, Zhu Y, Wu Z, Zhang Y, Chen Y, et al. Estimating dual-energy CT imaging from single-energy CT data with material decomposition convolutional neural network. Med Image Anal. 2021;70:102001. doi: 10.1016/j.media.2021.102001. PubMed PMID: 33640721.
- Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR Am J Roentgenol. 2010;194(4):881-9. doi: 10.2214/AJR.09.3462. PubMed PMID: 20308486.
- Henzler T, Fink C, Schoenberg SO, Schoepf UJ. Dual-energy CT: radiation dose aspects. AJR Am J Roentgenol. 2012;199(5 Suppl):S16-25. doi: 10.2214/AJR.12.9210. PubMed PMID: 23097163.
- Ghasemi Shayan R, Oladghaffari M, Sajjadian F, Fazel Ghaziyani M. Image Quality and Dose Comparison of Single-Energy CT (SECT) and Dual-Energy CT (DECT). Radiol Res Pract. 2020;2020:1403957. doi: 10.1155/2020/1403957. PubMed PMID: 32373363. PubMed PMCID: PMC7189324.
- Ho LM, Yoshizumi TT, Hurwitz LM, Nelson RC, Marin D, Toncheva G, Schindera ST. Dual energy versus single energy MDCT: measurement of radiation dose using adult abdominal imaging protocols. Acad Radiol. 2009;16(11):1400-7. doi: 10.1016/j.acra.2009.05.002. PubMed PMID: 19596594.
- Wichmann JL, Hardie AD, Schoepf UJ, Felmly LM, Perry JD, Varga-Szemes A, et al. Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur Radiol. 2017;27(2):642-50. doi: 10.1007/s00330-016-4383-6. PubMed PMID: 27165140.
- Sabarudin A, Sun Z, Yusof AK. Coronary CT angiography with single-source and dual-source CT: comparison of image quality and radiation dose between prospective ECG-triggered and retrospective ECG-gated protocols. Int J Cardiol. 2013;168(2):746-53. doi: 10.1016/j.ijcard.2012.09.217. PubMed PMID: 23098849.
- Mazloumi M, Van Gompel G, Kersemans V, De Mey J, Buls N. The presence of contrast agent increases organ radiation dose in contrast-enhanced CT. Eur Radiol. 2021;31(10):7540-9. doi: 10.1007/s00330-021-07763-7. PubMed PMID: 33783569. PubMed PMCID: PMC8452580.
- Paul J, Banckwitz R, Krauss B, Vogl TJ, Maentele W, Bauer RW. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT. Eur J Radiol. 2012;81(4):e507-12. doi: 10.1016/j.ejrad.2011.06.006. PubMed PMID: 21703793.
- Raudabaugh J, Nguyen G, Lowry C, Januzis N, Colsher J, Nelson R, Yoshizumi TT. Effective dose estimation from organ dose measurements in fast-kV switch dual energy computed tomography. Radiat Prot Dosimetry. 2018;182(3):352-8. doi: 10.1093/rpd/ncy072. PubMed PMID: 30590847.
- Pakravan D, Babapour Mofrad F, Deevband MR, Ghorbani M, Pouraliakbar H. Organ dose in cardiac dual-energy computed tomography: a Monte Carlo study. Phys Eng Sci Med. 2022;45(1):157-66. doi: 10.1007/s13246-021-01098-9. PubMed PMID: 35015205.
- Khodajou-Chokami H, Hosseini SA, Ay MR, Zaidi H. MCNP-FBSM: Development of MCNP/MCNPX source model for simulation of multi-slice fan-beam x-ray CT scanners. International Symposium on Medical Measurements and Applications (MeMeA); Istanbul, Turkey: IEEE; 2019.
- Pakravan D, Babapour Mofrad F, Deevband MR, Ghorbani M, Pouraliakbar H. A Monte Carlo Platform for Characterization of X-Ray Radiation Dose in CT Imaging. J Biomed Phys Eng. 2021;11(3):271-80. doi: 10.31661/jbpe.v0i0.2012-1254. PubMed PMID: 34189115. PubMed PMCID: PMC8236108.
- Cranley K, Gilmore BJ, Fogarty GWA, Deponds L. Catalog of diagnostic X-ray spectra and other data. IPEM report no. 78; IPEM Publications; 1997.
- Stabin M, Watson E, Cristy M, Ryman J, Eckerman K, Davis J, et al. Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. ORNL Report ORNL/TM-12907; Tennessee: Oak Ridge National Laboratory; 1995. Avaialable from: https://digital.library.unt.edu/ark:/67531/metadc791641/m2/1/high_res_d/91944.pdf.
- Krstić D, Nikezić Input files with ORNL-mathematical phantoms of the human body for MCNP-4B. Comput Phys Commun. 2007;176(1):33-7. doi: 10.1016/j.cpc.2006.06.016.
- Waters LS. MCNPX User’s Manual, Version 2.3.0. Report LA-CP-02-408; Los Alamos National Laboratory; 2002. Avaialable from: https://mcnpx.lanl.gov/pdf_files/TechReport_2002_LANL_LA-UR-02-2607_Waters.pdf.
- The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37(2-4):1-332. doi: 10.1016/j.icrp.2007.10.003. PubMed PMID: 18082557.
- Lee C, Flynn MJ, Judy PF, Cody DD, Bolch WE, Kruger RL. Body Size-Specific Organ and Effective Doses of Chest CT Screening Examinations of the National Lung Screening Trial. AJR Am J Roentgenol. 2017;208(5):1082-8. doi: 10.2214/AJR.16.16979. PubMed PMID: 28267354.
- Huda W, Ogden KM, Khorasani MR. Converting dose-length product to effective dose at CT. 2008;248(3):995-1003. doi: 10.1148/radiol.2483071964. PubMed PMID: 18710988. PubMed PMCID: PMC2657852.
- Rehani MM, Yang K, Melick ER, Heil J, Šalát D, Sensakovic WF, Liu B. Patients undergoing recurrent CT scans: assessing the magnitude. Eur Radiol. 2020;30(4):1828-36. doi: 10.1007/s00330-019-06523-y. PubMed PMID: 31792585.
|