تعداد نشریات | 20 |
تعداد شمارهها | 1,149 |
تعداد مقالات | 10,518 |
تعداد مشاهده مقاله | 45,416,055 |
تعداد دریافت فایل اصل مقاله | 11,291,720 |
Design, ADMET, PASS Prediction and Molecular Docking Studies of Novel pyrazolo[3,4-d]pyrimidines for Prospective of Anti-Cancer Agents | ||
Trends in Pharmaceutical Sciences | ||
مقاله 6، دوره 9، شماره 2، شهریور 2023، صفحه 147-158 اصل مقاله (2.54 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30476/tips.2023.98639.1192 | ||
نویسندگان | ||
Sathish Kumar Mittapalli* ؛ Jay Prakash Soni؛ Parameshwar Ravula؛ Nimisha Jain؛ Amit Upadhyay | ||
Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh, India. | ||
چکیده | ||
The increased burden of cancer disease globally arouses the urgent need for the development of novel chemical agent with improved efficacy and potency which can provide selective therapeutic outcome to an individual cancer patient. In this connection the in-silico designing of novel scaffolds are greatly helpful evading the need for synthesizing and evaluating the series of large number compounds. We have constructed novel pyrazolopyrimidines with reference to existing fused pyrimidine standards like central aromatic heterocycles, spacers, hydrophobic heads and tails. We examined for the nature and biochemical targets, ADMET evaluations using various online tools and molecular docking analysis through Schrodinger suite studied binding affinities with reference to standards as well as co-crystals. We designed pyrazolopyrimidines 7a-j and 12a-j along with molecular docking studies revealed that few were potential candidates compared to standard scores against various target kinases. The hydroxyl moiety in 7b & 7d, hydroxyl in 7e with 4-bromo showed more bonding affinity towards targets and remaining compounds produced mild to moderate affinities against various targets. GLU339, GLU51, LEU83, SER345, ASP404, ASN391, and ASP348 are major residues for H-bonding interactions, PHE80, LEU83, GLN275 influenced hydrophobic bonding and ASP404 for nitro group, GLU339 for hydroxyl group, LYS89 for methoxy groups are key residues in binding affinity. We also identified the key residues of target proteins involved in the interaction with ligands at the active pocket. We believe that these results could benefit the future development of anticancer scaffold containing pyrazolopyrimidine motifs in the core structure. | ||
تازه های تحقیق | ||
Sathish Kumar Mittapalli (Google Scholar) | ||
کلیدواژهها | ||
Cytotoxic؛ Drug-Likeness؛ Glide Score؛ Molinspiration؛ Pyrazolopyrimidine؛ Tyrosine Kinase | ||
مراجع | ||
1. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J Thorac Oncol. 2015 Sep;10(9):1243-1260. doi: 10.1097/JTO.0000000000000630. PMID: 26291008. 2. Knaus UG. Oxidants in Physiological Processes. Handb Exp Pharmacol. 2021;264:27-47. doi: 10.1007/164_2020_380. PMID: 32767144. 3. Cordeu L, Cubedo E, Bandrés E, Rebollo A, Sáenz X, Chozas H, et al. Biological profile of new apoptotic agents based on 2,4-pyrido[2,3-d]pyrimidine derivatives. Bioorg Med Chem. 2007 Feb 15;15(4):1659-69. doi: 10.1016/j.bmc.2006.12.010. Epub 2006 Dec 12. PMID: 17204425. 4. Yamaoka T, Kusumoto S, Ando K, Ohba M, Ohmori T. Receptor Tyrosine Kinase-Targeted Cancer Therapy. Int J Mol Sci. 2018 Nov 6;19(11):3491. doi: 10.3390/ijms19113491. PMID: 30404198; PMCID: PMC6274851. 5. Gan HK, Walker F, Burgess AW, Rigopoulos A, Scott AM, Johns TG. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 increases the formation of inactive untethered EGFR dimers. Implications for combination therapy with monoclonal antibody 806. J Biol Chem. 2007 Feb 2;282(5):2840-50. doi: 10.1074/jbc.M605136200. Epub 2006 Nov 8. PMID: 17092939. 6. Kim G, Ko YT. Small molecule tyrosine kinase inhibitors in glioblastoma. Arch Pharm Res. 2020 Apr;43(4):385-394. doi: 10.1007/s12272-020-01232-3. Epub 2020 Apr 1. PMID: 32239429. 7. Tahvanainen J, Kyläniemi MK, Kanduri K, Gupta B, Lähteenmäki H, Kallonen T, et al. Proviral integration site for Moloney murine leukemia virus (PIM) kinases promote human T helper 1 cell differentiation. J Biol Chem. 2013 Feb 1;288(5):3048-58. doi: 10.1074/jbc.M112.361709. Epub 2012 Dec 3. PMID: 23209281; PMCID: PMC3561529. 8. Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA. Centrosomes and cilia in human disease. Trends Genet. 2011 Aug;27(8):307-15. doi: 10.1016/j.tig.2011.05.004. Epub 2011 Jun 15. PMID: 21680046; PMCID: PMC3144269. 9. Akhramez S, Oumessaoud A, Hibot A, Talbi S, Hamri S, Ketatni EM, et al. Synthesis of pyrazolo-enaminones, bipyrazoles and pyrazolopyrimidines and evaluation of antioxidant and antimicrobial properties. Arab J Chem. 2022; 15(1):103527. 10. Shalai Y.R, Popovych M.V, Mandzynets S.M, Hreniukh V P, Finiuk N.S, Babsky A.M. Prooxidant and antioxidant processes in lymphoma cells under the action of pyrazolopyrimidine derivative. Studia Biologica. 2020;14(4):15-22. 11. Singh S, Gousuddin M. Synthesis of Pyrazolopyrimidine Derivatives and Its Antioxidants Activity. Educ Psychol. 2020;57(9):7272-86 12. Fekri A, Keshk EM, Khalil AM, Taha I. Synthesis of novel antioxidant and antitumor 5-aminopyrazole derivatives, 2D/3D QSAR, and molecular docking. Mol Divers. 2022 Apr;26(2):781-800. doi: 10.1007/s11030-021-10184-9. Epub 2021 Mar 8. PMID: 33683569. 13. Hassan A, El-Hifnawi H, Ahmed W. Design, Synthesis and in Vitro Evaluation of Antimicrobial and Anticancer Activity of Some Novel α,β-Unsaturated Ketones and their Corresponding Fused Pyridines. J Adv Pharm Res. 2019; 3(3): 117-133. doi: 10.21608/aprh.2019.10458.1081 14. El-Sayed R. Synthesis of an Efficiency Heterocyclic Systems, Surface Properties and Potential Pharmacological Interest. J Oleo Sci. 2018;67(8):991-1003. doi: 10.5650/jos.ess17222. PMID: 30068829. 15. Fahim AM, Farag AM, Shaaban MR, Rabag EA. Regioselective synthesis and DFT study of novel fused heterocyclic utilizing Thermal heating and Microwave Irradiation. Afinidad. 2018 Jun 30;75(582):148-159. 16. Gauthier A, Ho M. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update. Hepatol Res. 2013 Feb;43(2):147-54. doi: 10.1111/j.1872-034X.2012.01113.x. Epub 2012 Nov 12. PMID: 23145926; PMCID: PMC3574194. 17. Nassar IF, Abdel Aal MT, El-Sayed WA, A E Shahin M, Elsakka EGE, Mokhtar MM, et al. Discovery of pyrazolo[3,4-d]pyrimidine and pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives as novel CDK2 inhibitors: synthesis, biological and molecular modeling investigations. RSC Adv. 2022 May 17;12(23):14865-14882. doi: 10.1039/d2ra01968j. PMID: 35702208; PMCID: PMC9112407. 18. Traxler P, Bold G, Frei J, Lang M, Lydon N, Mett H, et al. Use of a pharmacophore model for the design of EGF-R tyrosine kinase inhibitors: 4-(phenylamino)pyrazolo[3,4-d]pyrimidines. J Med Chem. 1997 Oct 24;40(22):3601-16. doi: 10.1021/jm970124v. PMID: 9357527. 19. Smith J. Erlotinib: small-molecule targeted therapy in the treatment of non-small-cell lung cancer. Clin Ther. 2005 Oct;27(10):1513-34. doi: 10.1016/j.clinthera.2005.10.014. PMID: 16330289. 20. Druker BJ. Imatinib as a paradigm of targeted therapies. Adv Cancer Res. 2004;91:1-30. doi: 10.1016/S0065-230X(04)91001-9. PMID: 15327887. 21. Jin X, Mo Q, Zhang Y, Gao Y, Wu Y, Li J, et al. The p38 MAPK inhibitor BIRB796 enhances the antitumor effects of VX680 in cervical cancer. Cancer Biol Ther. 2016 May 3;17(5):566-76. doi: 10.1080/15384047.2016.1177676. PMID: 27082306; PMCID: PMC4910916. 22. Murphy EJ, Booth JC, Davrazou F, Port AM, Jones DN. Interactions of Anopheles gambiae odorant-binding proteins with a human-derived repellent: implications for the mode of action of n,n-diethyl-3-methylbenzamide (DEET). J Biol Chem. 2013 Feb 8;288(6):4475-85. doi: 10.1074/jbc.M112.436386. Epub 2012 Dec 23. PMID: 23261834; PMCID: PMC3567696. 23. Rafique B, Khalid AM, Akhtar K, Jabbar A. Interaction of anticancer drug methotrexate with DNA analyzed by electrochemical and spectroscopic methods. Biosens Bioelectron. 2013 Jun 15;44:21-6. doi: 10.1016/j.bios.2012.12.028. Epub 2012 Dec 27. PMID: 23384765. 24. Chen J, Zhang Y, Zhang Y, Zhao L, Chen L, Chai Y, et al. Host-guest inclusion for enhancing anticancer activity of pemetrexed against lung carcinoma and decreasing cytotoxicity to normal cells. Chin Chem Lett. 2021;32(10):3034-38. doi: 10.1016/j.cclet.2021.03.079. 25. Bae JY, Lee GE, Park H, Cho J, Kim J, Lee J, et al. Antiviral Efficacy of Pralatrexate against SARS-CoV-2. Biomol Ther (Seoul). 2021 May 1;29(3):268-272. doi: 10.4062/biomolther.2021.032. PMID: 33731494; PMCID: PMC8094065. 26. Abdellatif KR, Abdelall EK, Abdelgawad MA, Ahmed RR, Bakr RB. Synthesis and anticancer activity of some new pyrazolo[3,4-d]pyrimidin-4-one derivatives. Molecules. 2014 Mar 18;19(3):3297-309. doi: 10.3390/molecules19033297. PMID: 24647032; PMCID: PMC6270843. 27. Alharthy RD. Design and Synthesis of Novel Pyrazolo[3,4-d]Pyrimidines: In Vitro Cytotoxic Evaluation and Free Radical Scavenging Activity Studies. Pharm Chem J. 2020;54:273–278. doi: 10.1007/s11094-020-02190-2. 28. Hassan A, Mady M, Awad H, Hafez T. Synthesis and antitumor activity of some new pyrazolo[1,5-a]pyrimidines. Chin Chem Lett. 2017;28(2):388-93. doi: 10.1016/j.cclet.2016.10.022. 29. Dorababu A. Pyrazolopyrimidines as attractive pharmacophores in efficient drug design: A recent update. Arch Pharm (Weinheim). 2022 Oct;355(10):e2200154. doi: 10.1002/ardp.202200154. Epub 2022 Jun 13. PMID: 35698212. 30. Elgemeie GH, Azzam RA, Zaghary WA, Khedr MA, Elsherif GE. Medicinal Chemistry of Pyrazolopyrimidine Scaffolds Substituted with Different Heterocyclic Nuclei. Curr Pharm Des. 2022;28(41):3374-3403. doi: 10.2174/1381612829666221102162000. PMID: 36330628. 31. Robins RK. Potential Purine Antagonists. I. Synthesis of Some 4,6-Substituted Pyrazolo [3,4-d] pyrimidines1. J Am Chem Soc. 1956;78(4):784–790. 32. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar 3;7:42717. doi: 10.1038/srep42717. PMID: 28256516; PMCID: PMC5335600. 33. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002 Jun 6;45(12):2615-23. doi: 10.1021/jm020017n. PMID: 12036371. 34. Muegge I. Selection criteria for drug-like compounds. Med Res Rev. 2003 May;23(3):302-21. doi: 10.1002/med.10041. PMID: 12647312. 35. Attique SA, Hassan M, Usman M, Atif RM, Mahboob S, Al-Ghanim KA, et al. A Molecular Docking Approach to Evaluate the Pharmacological Properties of Natural and Synthetic Treatment Candidates for Use against Hypertension. Int J Environ Res Public Health. 2019 Mar 14;16(6):923. doi: 10.3390/ijerph16060923. PMID: 30875817; PMCID: PMC6466102. 36. Unnisa A, Abouzied AS, Baratam A, Lakshmi KC, Hussain T, Kunduru RD, et al. Design, synthesis, characterization, computational study and in-vitro antioxidant and anti-inflammatory activities of few novel 6-aryl substituted pyrimidine azo dyes. Arab J Chem. 2020;13(12):8638-8649. | ||
آمار تعداد مشاهده مقاله: 17,183 تعداد دریافت فایل اصل مقاله: 608 |