- World Health Organization. Breast cancer: prevention and control. 2021. Available from: URL: https://www.who.int/news-room/fact-sheets/detail/breast-cancer.(Accessed 30 August 2021).
- Kolandoozan S, Sadjadi A, Radmard AR, Khademi H. Five common cancers in Iran. Arch Iran Med.2010; 13(2):143-6. PMID: 20187669.
- Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network‐based classification of breast cancer metastasis. Mol. Syst. Biol. 2007; 3, 140. doi:10.1038/msb4100180.
- Weigelt B, Peterse JL, Van't Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005; 5(8):591-602. doi: 1038/nrc1670.
- Song, YY, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai Arch. Psychiatry. 2015; 27(2):130-5. doi: 10.11919/j.issn.1002-0829.215044. PMID: 26120265; PMCID: PMC4466856.
- D’Ambrosio A, Aria M, Iorio C, Siciliano R. Regression trees for multivalued numerical response variables. Expert Syst. Appl. 2017; 69:21-8. doi: 10.1016/j.eswa.2016.10.021.
- T. Saleh, A. Attia and O. Shaker, "Studying combined breast cancer biomarkers using machine learning techniques," 2016 IEEE 14th International Symposium on SAMI, Herlany, Slovakia, 2016: 247-251. doi: 10.1109/SAMI.2016.7423015.
- Sysoev O, Bartoszek K, Ekström EC, Ekholm Selling K. PSICA: Decision trees for probabilistic subgroup identification with categorical treatments. Stat Med. 2019;38(22):4436-52. doi: 10.1002/sim.8308. PMID: 31246349; PMCID: PMC6771862.
- De'ath G, Fabricius KE. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology. 2000; 81(11):3178-92. doi: 1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2.
- Zhao Y, Zhang Y. Comparison of decision tree methods for finding active objects. Adv Space Res. 2008;41(12):1955-9. doi:10.1016/j.asr.2007.07.020.
- Poorolajal J, Nafissi N, Akbari ME, Mahjub H, Esmailnasab N, Babaee E. Breast Cancer Survival Analysis Based on Immunohistochemistry Subtypes (ER/PR/HER2): a Retrospective Cohort Study. Arch Iran Med. 2016;19(10):680-6. doi: 0161910/aim.003. PMID: 27743431.
- Weigelt B, Peterse JL, Van't Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5(8):591-602. doi: 10.1038/nrc1670. PMID: 16056258.
- Moon WK, Lee YW, Huang YS, Lee SH, Bae MS, Yi A. et al. Computer-aided prediction of axillary lymph node status in breast cancer using tumor surrounding tissue features in ultrasound images. Comput Methods Programs Biomed. 2017;146:143-50. doi: 10.1016/j.cmpb.2017.06.001. PMID: 28688484.
- Purushotham A, Shamil E, Cariati M, Agbaje O, Muhidin A, Gillett C, et al. Age at diagnosis and distant metastasis in breast cancer–a surprising inverse relationship. Eur J Cancer. 2014;50(10):1697-705. doi: 10.1016/j.ejca.2014.04.00.
- Watkins EJ. Overview of breast cancer.
2019;32(10):13-7. doi: 10.1097/01.JAA.0000580524.95733.3d.
- Assi HA, Khoury KE, Dbouk H, Khalil LE, Mouhieddine TH, El Saghir NS. Epidemiology and prognosis of breast cancer in young women. J Thorac Dis. 2013 Jun;5 Suppl 1:S2-8. doi: 10.3978/j.issn.2072-1439.2013.05.24. PMID: 23819024; PMCID: PMC3695538.
- Tazhibi M, Fayaz M, Mokarian F. Detection of prognostic factors in metastatic breast cancer. J Res Med Sci. 2013;18(4):283-90 . PMID: 24124424; PMCID: PMC3793372.
- Lao C, Kuper-Hommel M, Elwood M, Campbell I, Lawrenson R. Metastatic relapse of stage I–III breast cancer in New Zealand. Cancer Causes Control. 2021;32(7):753-761. doi: 10.1007/s10552-021-01426-0. PMID: 33830387.
- Han L, Zhu Y, Liu Z, Yu T, He C, Jiang W. et al. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer. Eur Radiol. 2019 ;29(7):3820-9. doi: 10.1007/s00330-018-5981-2. PMID: 30701328.
- Cui X, Wang N, Zhao Y, Chen S, Li S, Xu M. et al. Preoperative prediction of axillary lymph node metastasis in breast cancer using radiomics features of DCE-MRI. Sci Rep. 2019 ;9(1):2240. doi: 10.1038/s41598-019-38502-0. PMID: 30783148; PMCID: PMC6381163.
- Yu FH, Wang JX, Ye XH, Deng J, Hang J, Yang B. Ultrasound-based radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer. Eur J Radiol. 2019;119:108658. doi: 10.1016/j.ejrad.2019.108658. PMID: 31521878.
- Tang Y, Yang CM, Su S, Wang WJ, Fan LP, Shu J. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. BMC Cancer. 2021;21(1):1268. doi: 10.1186/s12885-021-08947-6. PMID: 34819043; PMCID: PMC8611922.
- National breast cancer foundation. About Breast Cancer : Stages : Stage 3 (III) A, B, And C Breast Cancer Overview. Available from: URL: https://www.nationalbreastcancer.org/breast-cancer-stage-3. (Accessed 13 March 2023).
- Shahbazian H, Nouralizadeh M, Hosseini SM. A Retrospective study on Frequency of Modified Radical Mastectomy and Breast Conserving Surgery and its Association with Breast Cancer Stage in Southwest Iran. Int. J. Pharm. Res. Allied Sci. 2016;5(2): 208-211.
- Bettaieb I, Boukhris S, Adouni O, Zemni I, Goucha A, Jaidane O. et al. Breast Cancer in Elderly Women: Role of Tumor Characteristics in Predicting Axillary Lymph Node Metastasis. Eur J Surg Oncol. 2020;46(2):e36. doi: 10.1016/j.ejso.2019.11.058.
- Çiftci, F. The Role Of Breast-Conserving Surgery In The Treatment Of Early-Stage Breast Cancer. Dicle Tıp Dergisi. 2020;47(4):852-8. doi: 5798/dicletip.850378.
- Bhattacharjee, A. Comparison of Early Postoperative Outcome between Breast Conservative Surgery and Modified Radical Mastectomy: Bangladesh Perspective. European Journal of Surgical Oncology. 2020; 46(2): e35-6. doi: 10.1016/j.ejso.2019.11.056.
- Jääskeläinen A, Roininen N, Karihtala P, Jukkola A. High parity predicts poor outcomes in patients with luminal B-like (HER2 negative) early breast cancer: a prospective Finnish single-center study. Front Oncol. 2020;10:1470. doi: 10.3389/fonc.2020.01470. PMID: 32923400; PMCID: PMC7457016.
- Keyser EA, Staat BC, Fausett MB, Shields AD. Pregnancy-associated breast cancer. Rev Obstet Gynecol. 2012;5(2):94-9. PMID: 22866188; PMCID: PMC3410508.
- Najafi-Vosough R, Faradmal J, Tapak L, Alafchi B, Najafi-Ghobadi K, Mohammadi T. Prediction the survival of patients with breast cancer using random survival forests for competing risks. J Prev Med Hyg. 2022;63(2):E298-E303. doi: 10.15167/2421-4248/jpmh2022.63.2.2405. PMID: 35968067; PMCID: PMC9351408.
|