- Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009;69(9):4010–7.
- Lapteva N, Durett AG, Sun J, Rollins LA, Huye LL, Fang J, et al. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy. 2012 Oct 1;14(9):1131–43.
- Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994 Apr;8(4):652–8.
- Spanholtz J, Preijers F, Tordoir M, Trilsbeek C, Paardekooper J, Witte T de, et al. Clinical-Grade Generation of Active NK Cells from Cord Blood Hematopoietic Progenitor Cells for Immunotherapy Using a Closed-System Culture Process. PLOS ONE. 2011 Jun 16;6(6):e20740.
- Research C for BE and. Pre-Storage Leukocyte Reduction of Whole Blood and Blood Components Intended for Transfusion [Internet]. U.S. Food and Drug Administration. FDA; 2019 [cited 2020 Nov 26]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pre-storage-leukocyte-reduction-whole-blood-and-blood-components-intended-transfusion
- Sharma RR, Marwaha N. Leukoreduced blood components: Advantages and strategies for its implementation in developing countries. Asian J Transfus Sci. 2010;4(1):3–8.
- Dezfouli AB, Pourfathollah AA, Nikougoftar-Zarif M, Khosravi M, Tajrishi M, Ezzati N, et al. Optimizing the recovery of peripheral blood mononuclear cells trapped in leukoreduction filters - A comparison study. Hematol Transfus Cell Ther [Internet]. 2020 Dec 21 [cited 2020 Dec 30]; Available from: http://www.sciencedirect.com/science/article/pii/S253113792031302X
- Meyer TPH, Zehnter I, Hofmann B, Zaisserer J, Burkhart J, Rapp S, et al. Filter Buffy Coats (FBC): a source of peripheral blood leukocytes recovered from leukocyte depletion filters. J Immunol Methods. 2005;307(1–2):150–66.
- Valiathan R, Deeb K, Diamante M, Ashman M, Sachdeva N, Asthana D. Reference ranges of lymphocyte subsets in healthy adults and adolescents with special mention of T cell maturation subsets in adults of South Florida. Immunobiology. 2014 Jul 1;219(7):487–96.
- Bisset LR, Lung TL, Kaelin M, Ludwig E, Dubs RW. Reference values for peripheral blood lymphocyte phenotypes applicable to the healthy adult population in Switzerland. Eur J Haematol. 2004 Mar 1;72(3):203–12.
- Chng WJ, Tan GB, Kuperan P. Establishment of Adult Peripheral Blood Lymphocyte Subset Reference Range for an Asian Population by Single-Platform Flow Cytometry: Influence of Age, Sex, and Race and Comparison with Other Published Studies. Clin Diagn Lab Immunol. 2004 Jan 1;11(1):168–73.
- Shah N, Martin-Antonio B, Yang H, Ku S, Lee DA, Cooper LJN, et al. Antigen Presenting Cell-Mediated Expansion of Human Umbilical Cord Blood Yields Log-Scale Expansion of Natural Killer Cells with Anti-Myeloma Activity. PLOS ONE. 2013 Oct 18;8(10):e76781.
- Yoon SR, Lee YS, Yang SH, Ahn KH, Lee J-H, Lee J-H, et al. Generation of donor natural killer cells from CD34 + progenitor cells and subsequent infusion after HLA-mismatched allogeneic hematopoietic cell transplantation: a feasibility study. Bone Marrow Transplant. 2010 Jun;45(6):1038–46.
- Luevano M, Madrigal A, Saudemont A. Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy. Cell Mol Immunol. 2012 Jul;9(4):310–20.
- Eguizabal C, Zenarruzabeitia O, Monge J, Santos S, Vesga MA, Maruri N, et al. Natural Killer Cells for Cancer Immunotherapy: Pluripotent Stem Cells-Derived NK Cells as an Immunotherapeutic Perspective. Front Immunol [Internet]. 2014 [cited 2020 Nov 20];5. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2014.00439/full
- Woll PS, Grzywacz B, Tian X, Marcus RK, Knorr DA, Verneris MR, et al. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood. 2009 Jun 11;113(24):6094–101.
- Yodoi J, Teshigawara K, Nikaido T, Fukui K, Noma T, Honjo T, et al. TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J Immunol. 1985 Mar 1;134(3):1623–30.
- Yagita M, Huang CL, Umehara H, Matsuo Y, Tabata R, Miyake M, et al. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation. Leukemia. 2000 May;14(5):922–30.
- Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J. Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol. 1996;24(3):406–15.
- Klingemann H, Boissel L, Toneguzzo F. Natural Killer Cells for Immunotherapy – Advantages of the NK-92 Cell Line over Blood NK Cells. Front Immunol [Internet]. 2016 [cited 2020 Nov 18];7. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2016.00091/full#B13
- Maki G, Klingemann H-G, Martinson JA, Tam YK. Factors Regulating the Cytotoxic Activity of the Human Natural Killer Cell Line, NK-92. J Hematother Stem Cell Res. 2001 Jun 1;10(3):369–83.
- Fujisaki H, Kakuda H, Imai C, Mullighan CG, Campana D. Replicative potential of human natural killer cells. Br J Haematol. 2009;145(5):606–13.
- World Health Organization. WHO: Blood safety and availability [Internet]. [cited 2020 Nov 24]. Available from: https://www.who.int/news-room/fact-sheets/detail/blood-safety-and-availability
- Longley RE, Stewart D. Recovery of functional human lymphocytes from Leukotrap filters. J Immunol Methods. 1989 Jul 6;121(1):33–8.
- Weitkamp J-H, Crowe Jr JE. Blood donor leukocyte reduction filters as a source of human B lymphocytes. Biotechniques. 2001;31(3):464–6.
- Izquierdo N, Naranjo M, Fernández M, Cos J, Massuet L, Martínez-Picado J, et al. Leukocyte reduction filters: An alternative source of peripheral blood mononuclear cells. Inmunología. 2003;22(3):255–62.
- Tremblay MM, Houtman JCD. TCR-mediated functions are enhanced in activated peripheral blood T cells isolated from leucocyte reduction systems. J Immunol Methods. 2015 Jan 1;416:137–45.
- Ebner S, Neyer S, Hofer S, Nussbaumer W, Romani N, Heufler C. Generation of large numbers of human dendritic cells from whole blood passaged through leukocyte removal filters: an alternative to standard buffy coats. J Immunol Methods. 2001 Jun 1;252(1):93–104.
- Valizadeh M, Purfathollah AA, Raoofian R, Homayoonfar A, Moazzeni M. Optimized simple and affordable procedure for differentiation of monocyte-derived dendritic cells from LRF: An accessible and valid alternative biological source. Exp Cell Res. 2021 Sep 15;406(2):112754.
- Ivanovic Z, Duchez P, Morgan DA, Hermitte F, Lafarge X, Chevaleyre J, et al. Whole‐blood leukodepletion filters as a source of CD34+ progenitors potentially usable in cell therapy. Transfusion (Paris). 2006;46(1):118–25.
- Peytour Y, Guitart A, Villacreces A, Chevaleyre J, Lacombe F, Ivanovic Z, et al. Obtaining of CD34+ cells from healthy blood donors: development of a rapid and efficient procedure using leukoreduction filters. Transfusion (Paris). 2010;50(10):2152–7.
- Peytour Y, Villacreces A, Chevaleyre J, Ivanovic Z, Praloran V. Discarded leukoreduction filters: a new source of stem cells for research, cell engineering and therapy? Stem Cell Res. 2013;11(2):736–42.
- Ferdowsi S, Pourfathollah AA, Amiri F, Rafiee MH, Aghaei A. Evaluation of anticancer activity of α-defensins purified from neutrophils trapped in leukoreduction filters. Life Sci. 2019 May 1;224:249–54.
- Teleron AA, Carlson B, Young PP. Blood donor white blood cell reduction filters as a source of human peripheral blood–derived endothelial progenitor cells. Transfusion (Paris). 2005;45(1):21–5.
- Ferdowsi S, Abbasi-Malati Z, Pourfathollah AA. Leukocyte reduction filters as an alternative source of peripheral blood leukocytes for research. Hematol Transfus Cell Ther [Internet]. 2020 Dec 24 [cited 2020 Dec 30]; Available from: http://www.sciencedirect.com/science/article/pii/S2531137920313043
- Vossier L, Leon F, Bachelier C, Marchandin H, Lehmann S, Leonetti J-P, et al. An innovative biologic recycling process of leukoreduction filters to produce active human antimicrobial peptides. Transfusion (Paris). 2014;54(5):1332–9.
- Sasani N, Roghanian R, Emtiazi G, Aghaie A. A Novel Approach on Leukodepletion Filters: Investigation of Synergistic Anticancer Effect of Purified α-Defensins and Nisin. Vol. 11, Adv Pharm Bull. 2021. p. 378–84.
- Cook MA, Jobson SE, Atkinson DC, Lowe DP, Farmer SL, Alvi‐Ali WJ, et al. Used leucodepletion filters as a source of large quantities of DNA suitable for the study of genetic variations in human populations. Transfus Med. 2003;13(2):77–82.
- Néron S, Dussault N, Racine C. Whole‐blood leukoreduction filters are a source for cryopreserved cells for phenotypic and functional investigations on peripheral blood lymphocytes. Transfusion (Paris). 2006;46(4):537–44.
|