- Wagner, S., C.S. Mullins, and M. Linnebacher, Colorectal cancer vaccines: Tumor-associated antigens vs neoantigens. World J Gastroentero, 2018. 24(48): p. 5418-5432.
- Rus Bakarurraini, N.A.A. and N.S. Ab Mutalib, The Landscape of Tumor-Specific Antigens in Colorectal Cancer. Vaccines, 2020. 8(3): p. 371.
- van der Bruggen, P., et al., A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991. 254(5038): p. 1643.
- Krishnadas, D.K., F. Bai, and K.G. Lucas, Cancer testis antigen and immunotherapy. ImmunoTargets Ther, 2013. 2: p. 11-19.
- Salmaninejad, A., et al., Cancer/Testis Antigens: Expression, Regulation, Tumor Invasion, and Use in Immunotherapy of Cancers. Immunol Invest, 2016. 45(7): p. 619-40.
- Chi Soh, J.E., N. Abu, and R. Jamal, The potential immune-eliciting cancer testis antigens in colorectal cancer. Immunotherapy, 2018. 10(12): p. 1093-1104.
- Tarnowski, M., et al., Expression of Cancer Testis Antigens in Colorectal Cancer: New Prognostic and Therapeutic Implications. Dis Markers, 2016. 2016: p. 1987505.
- Soh, J.E., et al., Validation of immunogenic PASD1 peptides against HLA-A*24:02 colorectal cancer. Immunotherapy, 2019. 11(14): p. 1205-1219.
- De Smet, C., et al., DNA Methylation Is the Primary Silencing Mechanism for a Set of Germ Line- and Tumor-Specific Genes with a CpG-Rich Promoter. Mol Cell Biol, 1999. 19(11): p. 7327-7335.
- Zhang, W., et al., DNA hypomethylation-mediated activation of Cancer/Testis Antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer. Epigenetics, 2015. 10(8): p. 736-748.
- Serrano, A., et al., Methylated CpG points identified within MAGE-1 promoter are involved in gene repression. Int J Cancer, 1996. 68(4): p. 464-70.
- Odunsi, K., et al., Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol Res, 2014. 2(1): p. 37-49.
- Ishak, M., et al., Genome-Wide Open Chromatin Methylome Profiles in Colorectal Cancer. Biomolecules, 2020. 10(5): p. 719.
- Tian, Y., et al., ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 2017. 33(24): p. 3982-3984.
- Dedeurwaerder, S., et al., Evaluation of the Infinium Methylation 450K technology. Epigenomics, 2011. 3(6): p. 771-84.
- Johnson, W.E., C. Li, and A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 2006. 8(1): p. 118-127.
- Ritchie, M.E., et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015. 43(7): p. 1-13.
- Barrett, T., et al., NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res, 2012. 41(D1): p. 991-5.
- Díez-Villanueva, A., I. Mallona, and M.A. Peinado, Wanderer, an interactive viewer to explore DNA methylation and gene expression data in human cancer. Epigenet Chromatin, 2015. 8(1): p. 22.
- Charoentong, P., et al., Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep, 2017. 18(1): p. 248-262.
- Chüeh, A.C., et al., Promoter hypomethylation of NY-ESO-1, association with clinicopathological features and PD-L1 expression in non-small cell lung cancer. Oncotarget, 2017. 8(43): p. 74036-74048.
- Colemon, A., T.M. Harris, and S. Ramanathan, DNA hypomethylation drives changes in MAGE-A gene expression resulting in alteration of proliferative status of cells. Genes Environ, 2020. 42(1): p. 24.
- Siebenkäs, C., et al., Inhibiting DNA methylation activates cancer testis antigens and expression of the antigen processing and presentation machinery in colon and ovarian cancer cells. PLoS One, 2017. 12(6): p. e0179501.
- Jakobsen, M.K., et al., The Cancer/Testis Antigen Gene VCX2 Is Rarely Expressed in Malignancies but Can Be Epigenetically Activated Using DNA Methyltransferase and Histone Deacetylase Inhibitors. Front Oncol, 2021. 10(3243).
- Song, X., et al., MicroRNA-874 Functions as a Tumor Suppressor by Targeting Cancer/Testis Antigen HCA587/MAGE-C2. J Cancer, 2016. 7(6): p. 656-663.
- Kutilin, D.S., [Regulation of Gene Expression of Cancer/Testis Antigens in Colorectal Cancer Patients]. Mol Biol (Mosk), 2020. 54(4): p. 580-595.
- Rettori, M.M., et al., TIMP3 and CCNA1 hypermethylation in HNSCC is associated with an increased incidence of second primary tumors. J Transl Med, 2013. 11(1): p. 316.
- Zuo, Q., et al., Methylation in the Promoters of HS3ST2 and CCNA1 Genes is Associated with Cervical Cancer in Uygur Women in Xinjiang. Int J Biol Marker, 2014. 29(4): p. 354-362.
- Yang, B., et al., Correlation of CCNA1 Promoter Methylation with Malignant Tumors: A Meta-Analysis Introduction. BioMed Res Int, 2015. 2015: p. 134027.
- Chang, L.-C., et al., Copy Number Alterations of Depressed Colorectal Neoplasm Predict the Survival and Response to Oxaliplatin in Proximal Colon Cancer. Cancers, 2020. 12(6): p. 1527.
- Yu, Z., et al., Transmembrane protein 108 involves in adult neurogenesis in the hippocampal dentate gyrus. Cell Biosci, 2019. 9(1): p. 9.
- Cheng, Y.-S., et al., MAEL promoter hypermethylation is associated with de-repression of LINE-1 in human hypospermatogenesis. Human Reproduction, 2017. 32(12): p. 2373-2381.
- Xiao, L., et al., Identification of a novel human cancer/testis gene MAEL that is regulated by DNA methylation. Molecular Biology Reports, 2010. 37(5): p. 2355-2360.
- Tang, Z., et al., GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res, 2017. 45(W1): p. 98-102.
|