Background: The effect of different types of substances on brain function is still challenging; however, many studies have shown the functional and structural damage to the brain under influence of substance abuse. Objective: This study aimed to quantitatively compare the effect of opioid (Op), methamphetamine (Meth), cannabis (Can), and simultaneous methamphetamine and opioid (Multi-Drug (MD)) abuse on brain function. Furthermore, the impacts of pure Op and Meth abuse were considered with simultaneous substance abuse. Material and Methods: In this descriptive study, the electroencephalogram (EEG) signal was recorded from 52 participants in the Meth, Op, Can, and MD abusers, and the Healthy Control (HC) groups at rest state. EEG data were analyzed on the frequency domain with electrode-based, cortex-based, and hemisphere-based approaches. Results: However, the power spectrum in the delta band in the Op group, the gamma band in the Can group, and the gamma and beta bands in the MD group more significantly increased compared to the HC group, the power spectrum values in the Meth group reduced in the alpha, beta, and gamma bands. Moreover, the power spectrum values in the MD group more significantly higher than the Meth and Op groups in the beta and gamma bands.
Conclusion: Since substance abuse in different types caused various changes in frequency components, the different power spectrum bands analysis in abusers can be reasonable to apply as a biomarker to detect the drug types.
|
- United Nations Office on Drugs and Crime. Data UNODC/ dp-drug-use-prevalence. 2021. Available from: https://dataunodc.un.org/dp-drug-use-prevalence.
- American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Washington: American Psychiatric Association; 2013.
- Cox BM. Pharmacology of opioid drugs. In: The Opiate Receptors. Springer; 2011. p. 23-57.
- Keihani A, Ekhtiari H, Batouli SAH, Shahbabaie A, Sadighi N, et al. Lower Gray Matter Density in the Anterior Cingulate Cortex and Putamen Can Be Traceable in Chronic Heroin Dependents After Over Three Months of Successful Abstinence. Iran J Radiol. 2017;14(3):e41858. doi: 10.5812/iranjradiol.41858.
- Farnia V, Farshchian F, Farshchian N, Alikhani M, Pormehr R, Golshani S, Salemi S. A Voxel-Based Morphometric Brain Study of Patients with Methamphetamine Dependency: A Case Controlled Study. NeuroQuantology. 2018;16(12):57-62. doi: 10.14704/nq.2018.16.12.1851.
- Vuletic D, Dupont P, Robertson F, Warwick J, Zeevaart JR, Stein DJ. Methamphetamine dependence with and without psychotic symptoms: A multi-modal brain imaging study. Neuroimage Clin. 2018;20:1157-62. doi: 10.1016/j.nicl.2018.10.023. PubMed PMID: 30380522. PubMed; PMCID: PMC6205927.
- Moreno-Alcázar A, Gonzalvo B, Canales-Rodríguez EJ, Blanco L, Bachiller D, Romaguera A, et al. Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis. Front Psychiatry. 2018;9:175. doi: 10.3389/fpsyt.2018.00175. PubMed PMID: 29773998. PubMed PMCID: PMC5943550.
- Huhn AS, Meyer RE, Harris JD, Ayaz H, Deneke E, Stankoski DM, Bunce SC. Evidence of anhedonia and differential reward processing in prefrontal cortex among post-withdrawal patients with prescription opiate dependence. Brain Res Bull. 2016;123:102-9. doi: 10.1016/j.brainresbull.2015.12.004. PubMed PMID: 26711857. PubMed PMCID: PMC4893930.
- Zare Sadeghi A, Jafari AH, Oghabian MA, Salighehrad HR, Batouli SAH, Raminfard S, Ekhtiari H. Changes in Effective Connectivity Network Patterns in Drug Abusers, Treated With Different Methods. Basic Clin Neurosci. 2017;8(4):285-98. doi: 10.18869/nirp.bcn.8.4.285. PubMed PMID: 29158879. PubMed PMCID: PMC5683686.
- Khajehpour H, Mohagheghian F, Ekhtiari H, Makkiabadi B, Jafari AH, Eqlimi E, Harirchian MH. Computer-aided classifying and characterizing of methamphetamine use disorder using resting-state EEG. Cogn Neurodyn. 2019;13(6):519-30. doi: 10.1007/s11571-019-09550-z. PubMed PMID: 31741689. PubMed PMCID: PMC6825232.
- Crane NA, Funkhouser CJ, Burkhouse KL, Klumpp H, Phan KL, Shankman SA. Cannabis users demonstrate enhanced neural reactivity to reward: An event-related potential and time-frequency EEG study. Addict Behav. 2021;113:106669. doi: 10.1016/j.addbeh.2020.106669. PubMed PMID: 33035810. PubMed PMCID: PMC7736273.
- Imperatori C, Massullo C, Carbone GA, Panno A, Giacchini M, Capriotti C, et al. Increased Resting State Triple Network Functional Connectivity in Undergraduate Problematic Cannabis Users: A Preliminary EEG Coherence Study. Brain Sci. 2020;10(3):136. doi: 10.3390/brainsci10030136. PubMed PMID: 32121183. PubMed PMCID: PMC7139645.
- Khajehpour H, Makkiabadi B, Ekhtiari H, Bakht S, Noroozi A, Mohagheghian F. Disrupted resting-state brain functional network in methamphetamine abusers: A brain source space study by EEG. PLoS One. 2019;14(12):e0226249. doi: 10.1371/journal.pone.0226249. PubMed PMID: 31825996. PubMed PMCID: PMC6906079.
- Ahmadlou M, Ahmadi K, Rezazade M, Azad-Marzabadi E. Global organization of functional brain connectivity in methamphetamine abusers. Clin Neurophysiol. 2013;124(6):1122-31. doi: 10.1016/j.clinph.2012.12.003. PubMed PMID: 23332777.
- Newson JJ, Thiagarajan TC. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front Hum Neurosci. 2019;12:521. doi: 10.3389/fnhum.2018.00521. PubMed PMID: 30687041. PubMed PMCID: PMC6333694.
- Minnerly C, Shokry IM, To W, Callanan JJ, Tao R. Characteristic changes in EEG spectral powers of patients with opioid-use disorder as compared with those with methamphetamine- and alcohol-use disorders. PLoS One. 2021;16(9):e0248794. doi: 10.1371/journal.pone.0248794. PubMed PMID: 34506492. PubMed PMCID: PMC8432824.
- Nihon Kohden Corporation. EEG system: EEG-1260. 2022. Available: https://us.nihonkohden.com/products/eeg-1200/.
- De Cheveigné A, Arzounian D. Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data. 2018;172:903-12. doi: 10.1016/j.neuroimage.2018.01.035. PubMed PMID: 29448077. PubMed PMCID: PMC5915520.
- Jiang X, Bian GB, Tian Z. Removal of Artifacts from EEG Signals: A Review. Sensors (Basel). 2019;19(5):987. doi: 10.3390/s19050987. PubMed PMID: 30813520. PubMed PMCID: PMC6427454.
- Salehi M, Darchini-Maragheh E, Payandeh A, Behdani F, Ghasemzadeh Kolagar H. Evaluation of the Correlations between Depression, Anxiety, and Stress as DASS-21 Subscales and High-Risk Behaviors in the Adolescents in Torghabeh and Shandiz Towns, Iran. Patient Saf Qual Improv. 2017;5(3):584-90 doi: 10.22038/PSJ.2017.9479.
- Kushkestani M, Parvani M, Nosrani SE, Bathaeezadeh SY. The relationship between drug use, sleep quality and quality of life in dormitory students at Allameh Tabataba’i University, Iran. Popul Med. 2020;2:1-7. doi: 10.18332/popmed/115799.
- Du X, Xu W, Li X, Zhou D, Han C. Sleep Disorder in Drug Addiction: Treatment With Transcranial Magnetic Stimulation. Front Psychiatry. 2019;10:848. doi: 10.3389/fpsyt.2019.00848. PubMed PMID: 31798482. PubMed PMCID: PMC6878723.
- Moini J, Piran P. Functional and Clinical Neuroanatomy: A Guide for Health Care Professionals. Academic Press; 2020.
- Laprevote V, Bon L, Krieg J, Schwitzer T, Bourion-Bedes S, Maillard L, Schwan R. Association between increased EEG signal complexity and cannabis dependence. Eur Neuropsychopharmacol. 2017;27(12):1216-22. doi: 10.1016/j.euroneuro.2017.10.038. PubMed PMID: 29132831.
- Yun K, Park HK, Kwon DH, Kim YT, Cho SN, Cho HJ, Peterson BS, Jeong J. Decreased cortical complexity in methamphetamine abusers. Psychiatry Res. 2012;201(3):226-32. doi: 10.1016/j.pscychresns.2011.07.009. PubMed PMID: 22445216.
|