Background: Bladder cancer (BC) is known as the most frequent neoplasm of the urinary system, whose prevalence has significantly increased over the past three decades. Successful treatment of BC is a highly challenging task. In this regard, several studies have demonstrated that increased level of oxidative stress may cause cancer cells death. Furthermore, silver nanoparticles (AgNPs) are recognized as one of the most widely used nanomaterials in cancer treatment. Herein, we evaluated the AgNPs-induced oxidative stress in BC 5637 cell line. Method: In the current experimental study, using colorimetric reactions, we assessed the levels of oxidative stress parameters, including malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), as well as the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) as antioxidant enzymes. Moreover, we performed the statistical analysis via One-way ANOVA and post-hoc Tukey tests to draw comparisons between the groups. Results: The results indicated an increased amount of TOS, MDA, and oxidative stress index. Nonetheless, there was a remarkable reduction in SOD, GPx, and CAT activities and TAC level in the AgNPs-exposed cells compared to the control untreated ones (P < 0.05). Conclusion: All in all, AgNPs have the potential to induce oxidative stress in 5637 cells. We thus concluded that AgNPs can be chosen as an antitumor agent for future investigations to treat BC. |
- Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31(1):100-10. doi: 10.1093/carcin/bgp263.
- Wu T, Duan X, Hu C, Wu C, Chen X, Huang J, et al. Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif Cells Nanomed Biotechnol. 2019;47(1):512-23. doi: 10.1080/21691401.2018.1560305.
- Burger M, Catto JW, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63(2):234-41. doi: 10.1016/j.eururo.2012.07.033.
- Wong MCS, Fung FDH, Leung C, Cheung WWL, Goggins WB, Ng CF. The global epidemiology of bladder cancer: a joinpoint regression analysis of its incidence and mortality trends and projection. Sci Rep. 2018;8(1):1129. doi: 10.1038/s41598-018-19199-z.
- Rouanne M, Loriot Y, Lebret T, Soria JC. Novel therapeutic targets in advanced urothelial carcinoma. Crit Rev Oncol/Hematol. 2016;98:106-15. doi: 10.1016/j.critrevonc.2015.10.021.
- Liu Y, Crawford BM, Vo-Dinh T. Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunotherapy. 2018;10(13):1175-88. doi: 10.2217/imt-2018-0029.
- Raj S, Khurana S, Choudhari R, Kesari KK, Kamal MA, Garg N, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol. 2021;69:166-77. doi: 10.1016/j.semcancer.2019.11.002.
- Huy TQ, Huyen PTM, Le AT, Tonezzer M. Recent advances of silver nanoparticles in cancer diagnosis and treatment. Anticancer Agents Med Chem. 2020;20(11):1276-87. doi: 10.2174/1871520619666190710121727.
- Daei S, Ziamajidi N, Abbasalipourkabir R, Khanaki K, Bahreini F. Anticancer effects of gold nanoparticles by inducing apoptosis in bladder cancer 5637 cells. Biol Trace Elem Res. 2022;200(6):2673-83. doi: 10.1007/s12011-021-02895-9.
- Reddy NV, Satyanarayana BM, Sivasankar S, Pragathi D, Subbaiah KV, Vijaya T. Eco-friendly synthesis of silver nanoparticles using leaf extract of Flemingia wightiana: spectral characterization, antioxidant and anticancer activity studies. SN Applied Sciences. 2020;2(5):1-10. doi: 10.1007/s42452-020-2702-7.
- Gurunathan S, Qasim M, Park C, Yoo H, Choi DY, Song H, et al. Cytotoxicity and transcriptomic analysis of silver nanoparticles in mouse embryonic fibroblast cells. Int J Mol Sci. 2018;19(11):3618. doi: 10.3390/ijms19113618.
- Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KF, Banik S, et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J Adv Res. 2018;9:1-6. doi: 10.1016/j.jare.2017.10.008.
- Franco-Molina MA, Mendoza-Gamboa E, Sierra-Rivera CA, Gómez-Flores RA, Zapata-Benavides P, Castillo-Tello P, et al. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J Exp Clin Cancer Res. 2010;29(1):1-7. doi: 10.1186/1756-9966-29-148.
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54. doi: 10.1006/abio.1976.9999.
- Daei S, Abbasalipourkabir R, Ziamajidi N. Investigating anticancer effects of silver nanoparticles on bladder cancer 5637 cells in comparison to human embryonic kidney normal cells (HEK-293). [In Persian] Armaghane-danesh. 2022;27(1): 27-41.
- Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50-64. doi: 10.1016/j.semcdb.2017.05.023.
- Mukherjee S, Patra CR. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale. 2016;8(25):12444-70. doi: 10.1039/c5nr07887c.
- Yang J, Wang Q, Wang C, Yang R, Ahmed M, Kumaran S, et al. Pseudomonas aeruginosa synthesized silver nanoparticles inhibit cell proliferation and induce ROS mediated apoptosis in thyroid cancer cell line (TPC1). Artif Cells Nanomed Biotechnol. 2020;48(1):800-9. doi: 10.1080/21691401.2019.1687495.
- Xu Z, Feng Q, Wang M, Zhao H, Lin Y, Zhou S. Green biosynthesized silver nanoparticles with aqueous extracts of Ginkgo biloba induce apoptosis via mitochondrial pathway in cervical cancer cells. Front Oncol. 2020;10:2282. doi: 10.3389/fonc.2020.575415.
- Erdogan O, Abbak M, Demirbolat GM, Birtekocak F, Aksel M, Pasa S, et al. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One. 2019;14(6):e0216496. doi: 10.1371/journal.pone.0216496.
- Chinnasamy G, Chandrasekharan S, Bhatnagar S. Biosynthesis of silver nanoparticles from Melia azedarach: Enhancement of antibacterial, wound healing, antidiabetic and antioxidant activities. Int J Nanomed. 2019;14:9823. doi: 10.2147/IJN.S231340.
- Barbasz A, Oćwieja M, Roman M. Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60. Colloids Surf B Biointerfaces. 2017;156:397-404. doi: 10.1016/j.colsurfb.2017.05.027.
- Hamida RS, Albasher G, Bin-Meferij MM. Oxidative stress and apoptotic responses elicited by nostoc-synthesized silver nanoparticles against different cancer cell lines. Cancers. 2020;12(8):2099. doi: 10.3390/cancers12082099.
- Ávalos A, Haza AI, Mateo D, Morales P. Effects of silver and gold nanoparticles of different sizes in human pulmonary fibroblasts. Toxicol Mech Methods. 2015;25(4):287-95. doi: 10.3109/15376516.2015.1025347.
- Ighodaro O, Akinloye O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54(4):287-93. doi: 10.1016/j.ajme.2017.09.001.
- Ahn EY, Park Y. Anticancer prospects of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng C. 2020;116:111253. doi: 10.1016/j.msec.2020.111253.
- Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12(12):931-47. doi: 10.1038/nrd4002.
- Sznarkowska A, Kostecka A, Meller K, Bielawski KP. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget. 2017;8(9):15996. doi: 10.18632/oncotarget.13723.
|