Azizi, Shahla, Moradi Birgani, Parmida, Ashtiani, Meghdad, Irani, Ashkan, Shahrokhi, Amin, Meydanloo, Khadijeh, Mirbagheri, Mohammad Mehdi. (1402). The Relationship between Structure of the Corticoreticular Tract and Walking Capacity in Children with Cerebral Palsy. سامانه مدیریت نشریات علمی, 14(1), 79-88. doi: 10.31661/jbpe.v0i0.2104-1302
Shahla Azizi; Parmida Moradi Birgani; Meghdad Ashtiani; Ashkan Irani; Amin Shahrokhi; Khadijeh Meydanloo; Mohammad Mehdi Mirbagheri. "The Relationship between Structure of the Corticoreticular Tract and Walking Capacity in Children with Cerebral Palsy". سامانه مدیریت نشریات علمی, 14, 1, 1402, 79-88. doi: 10.31661/jbpe.v0i0.2104-1302
Azizi, Shahla, Moradi Birgani, Parmida, Ashtiani, Meghdad, Irani, Ashkan, Shahrokhi, Amin, Meydanloo, Khadijeh, Mirbagheri, Mohammad Mehdi. (1402). 'The Relationship between Structure of the Corticoreticular Tract and Walking Capacity in Children with Cerebral Palsy', سامانه مدیریت نشریات علمی, 14(1), pp. 79-88. doi: 10.31661/jbpe.v0i0.2104-1302
Azizi, Shahla, Moradi Birgani, Parmida, Ashtiani, Meghdad, Irani, Ashkan, Shahrokhi, Amin, Meydanloo, Khadijeh, Mirbagheri, Mohammad Mehdi. The Relationship between Structure of the Corticoreticular Tract and Walking Capacity in Children with Cerebral Palsy. سامانه مدیریت نشریات علمی, 1402; 14(1): 79-88. doi: 10.31661/jbpe.v0i0.2104-1302
The Relationship between Structure of the Corticoreticular Tract and Walking Capacity in Children with Cerebral Palsy
1Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical, Tehran, Iran
2Department of Electrical and Electronic Engineering, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey
3Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4Department of Occupational Therapy, Faculty of Rehabilitation, Shahid Beheshti University of Medical Sciences Health Services, Tehran, Iran
5Faculty of Medicine, Tehran University of Medical, Tehran, Iran
6School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
7Department of Physical Medicine and Rehabilitation, Northwestern University, Evanston, United States
چکیده
Background: Disruption in the descending pathways may lead to gait impairments in Cerebral Palsy (CP) children. Though, the mechanisms behind walking problems have not been completely understood. Objective: We aimed to define the relationship between the structure of the corticoreticular tract (CRT) and walking capacity in children with CP. Material and Methods: This is a retrospective, observational, and cross-sectional study. Twenty-six children with CP between 4 to 15 years old participated. Also, we used existed data of healthy children aged 4 to 15 years old. CRT structure was characterized using diffusion tensor imaging (DTI). The DTI parameters extracted to quantify CRT structure included: fractional anisotropy (FA), mean (MD), axial (AD), and radial (RD) diffusivity. Balance and walking capacity was evaluated using popular clinical measures, including the Berg balance scale (BBS), Timed-Up-and-Go (TUG; balance and mobility), six-minute walk test (6 MWT; gait endurance), and 10-meter walk Test (10 MWT; gait speed). Results: There are significant differences between MD, AD, and RD in CP and healthy groups. Brain injury leads to various patterns of the CRT structure in children with CP. In the CP group with abnormal CRT patterns, DTI parameters of the more affected CRT are significantly correlated with walking balance, speed, and endurance measures. Conclusion: Considering the high inter-subject variability, the variability of CRT patterns is vital for determining the nature of changes in CRT structure, their relationship with gait impairment, and understanding the underlying mechanisms of movement disorders. This information is also important for the development or prescription of an effective rehabilitation target for individualizing treatment.
Krigger KW. Cerebral Palsy: An Overview. Am Fam Physician. 2006;73(1):91-100. PubMed PMID: 16417071.
Aisen ML, Kerkovich D, Mast J, Mulroy S, et al. Cerebral palsy: clinical care and neurological rehabilitation. Lancet Neurol. 2011;10:844-52. doi: 10.1016/S1474-4422(11)70176-4. PubMed PMID: 21849165.
Krägeloh-Mann I, Cans C. Cerebral palsy update. Brain Dev. 2009;31(7):537-44. doi: 10.1016/j.braindev.2009.03.009. PubMed PMID: 19386453.
Rome K, McNair P. Management of chronic conditions in the foot and lower leg. Elsevier; 2015. p. 214-50.
Richards CL, Malouin F. Cerebral palsy: definition, assessment and rehabilitation. Handb Clin Neurol. 2013;111:183-95. doi: 10.1016/B978-0-444-52891-9.00018-X. PubMed PMID: 23622163.
Riddle CN, Edgley SA, Baker SN. Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract. J Neurosci. 2009;29(15):4993-9. doi: 10.1523/JNEUROSCI.3720-08.2009. PubMed PMID: 19369568. PubMed PMCID: PMC2690979.
Yeo SS, Kim SH, Jang SH. Proximal weakness due to injury of the corticoreticular pathway in a patient with traumatic brain injury. NeuroRehabilitation. 2013;32:665-9. doi: 10.3233/NRE-130889. PubMed PMID: 23648621.
Do KH, Yeo SS, Lee J, Jang SH. Injury of the corticoreticular pathway in patients with proximal weakness following cerebral infarct: Diffusion tensor tractography study. Neurosci Lett. 2013;546:21-5. doi: 10.1016/j.neulet.2013.04.040. PubMed PMID: 23643994.
Vorona GA, Berman JI. Review of diffusion tensor imaging and its application in children. Pediatr Neurol. 2015;45(Suppl 3):375-81. doi: 10.1007/s00247-015-3277-0. PubMed PMID: 26346143.
Drew T, Dubuc R, Rossignol S. Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill. J Neurophysiol. 1986;55(2):375-401. doi: 10.1152/jn.1986.55.2.375. PubMed PMID: 3950696.
Glover JC, Petursdottir G. Pathway Specificity of Reticulospinal and Vestibulospinal Projections in the 11-Day Chicken Embryo. J Comp Neurol. 1988;270(1):25-38. doi: 10.1002/cne.902700104. PubMed PMID: 3372737.
Glover JC, Petursdottirt G. Regional Specificity of Developing Reticulospinal, Vestibulospinal, and Vestibulo-Ocular Projections in the Chicken Embryo. J Neurophysiol. 1991;353-76. doi: 10.1002/neu.480220405. PubMed PMID: 1890420.
Kimmel CB. Reticulospinal and Vestibulospinal Neurons in the Young Larva of a Teleost Fish, Brachydanio rerio. Prog Brain Res. 1982;57:1-23. doi: 10.1016/S0079-6123(08)64122-9. PubMed PMID: 7156394.
Matsuyama K, Mori F, Nakajima K, Drew T, Aoki M, Mori S. Locomotor role of the corticoreticular–reticulospinal–spinal interneuronal system. Prog Brain Res. 2004;143:239-49. doi: 10.1016/S0079-6123(03)43024-. PubMed PMID: 14653169.
Prentice SD, Drew T, Stephen D, Drew T. Contributions of the Reticulospinal System to the Postural Adjustments Occurring During Voluntary Gait Modifications. J Neurophysiol. 2001;85(2):679-98. doi: 10.1152/jn.2001.85.2.679. PubMed PMID: 11160503.
Davidson AG, Buford JA. Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: Stimulus triggered averaging. Exp Brain Res. 2006;173(1):25-39. doi: 10.1007/s00221-006-0374-1. PubMed PMID: 16506008
Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain. 2012;135(Pt 7):2277-89. doi: 10.1093/brain/aws115. PubMed PMID: 22581799. PubMed PMCID: PMC3381720.
Yeo SS, Chang MC, Kwon YH, Jung YJ, Jang SH. Corticoreticular pathway in the human brain: diffusion tensor tractography study. Neurosci Lett. 2012;508(1):9-12. doi: 10.1016/j.neulet.2011.11.030. PubMed PMID: 22197953
Yoo JS, Choi BY, Chang CH, Jung YJ, Kim SH, Jang SH. Characteristics of injury of the corticospinal tract and corticoreticular pathway in hemiparetic patients with putaminal hemorrhage. BMC Neurol. 2014;14(1):121. doi: 10.1186/1471-2377-14-121. PubMed PMID: 24903632. PubMed PMCID: PMC4096439.
Jang SH LH. Gait deterioration due to neural degeneration of the corticoreticular pathway: a case report. Neural Regen Res. 2016;11(4):687-8. doi: 10.4103/1673-5374.180759. PubMed PMID: 27212936. PubMed PMCID: PMC4870932.
Jang SH, Kwon HG. Delayed gait recovery with recovery of an injured corticoreticulospinal tract in a chronic hemiparetic patient. Medicine (Baltimore). 2016;95(46):e5277. doi: 10.1097/MD.0000000000005277. PubMed PMID: 27861352. PubMed PMCID: PMC5120909.
Jang SH, Chang CH, Jung YJ, Seo YS. Recovery process of bilaterally injured corticoreticulospinal tracts in a patient with subarachnoid hemorrhage: Case report. Medicine (Baltimore). 2018;97(50):e13401. doi: 10.1097/MD.0000000000013401. PubMed PMID: 30557993. PubMed PMCID: PMC6320100.
Yeo SS, Jang SH. Recovery of an injured corticospinal tract and an injured corticoreticular pathway in a patient with intracerebral hemorrhage. 2013;32(2):305-9. doi: 10.3233/NRE-130848. PubMed PMID: 23535792.
Jang SH, Lee HD. Gait recovery by activation of the unaffected corticoreticulospinal tract in a stroke patient: A case report. Medicine (Baltimore). 2017;96(50):e9123. doi: 10.1097/MD.0000000000009123. PubMed PMID: 29390312. PubMed PMCID: PMC5815724.
Nooner KB, Colcombe SJ, Tobe RH, Mennes M, Benedict MM, Moreno AL, et al. The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front Neurosc 2012;6:152. doi: 10.3389/fnins.2012.00152. PubMed PMID: 23087608. PubMed PMCID: PMC3472598.
Provost B, Dieruf K, Burtner PA, Phillips JP, Bernitsky-Beddingfield A, Sullivan KJ, et al. Endurance and gait in children with cerebral palsy after intensive body weight-supported treadmill training. Pediatr Phys Ther. 2007;19:2-10. doi: 10.1097/01.pep.0000249418.25913.a3. PubMed PMID: 17304092.
Goldman MD, Marrie RA, Cohen JA. Evaluation of the six-minute walk in multiple sclerosis. Mult Scler. 2008;14:383-90. doi: 10.1177/1352458507082607. PubMed PMID: 17942508.
Barthélemy D, Willerslev-Olsen M, Lundell H, Biering-Sørensen F, Nielsen JB. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury. Prog Brain Res. 2015;218:79-101. doi: 10.1016/bs.pbr.2014.12.012. PubMed PMID: 25890133.
Iatridou G, Dionyssiotis Y. Reliability of balance evaluation in children with cerebral palsy. 2013;17(4):303-6. PubMed PMID: 25031506. PubMed PMCID: PMC4097408.
Kumar A, Juhasz C, Asano E, Sundaram SK, Makki MI, Chugani DC, et al. Diffusion tensor imaging study of the cortical origin and course of the corticospinal tract in healthy children. Am J Neuroradiol. 2009;30:1963-70. doi: 10.3174/ajnr.A1742. PubMed PMID: 19661173. PubMed PMCID: PMC3687778.
Tromp D. DTI Scalars (FA, MD, AD, RD) - How do they relate to brain structure? The Winnower. doi: 10.15200/winn.146119.94778.
Jang SH, Chang CH, Lee J, Kim CS, Seo JP, Yeo SS. Functional role of the corticoreticular pathway in chronic stroke patients. Stroke. 2013;44(4):1099-104. doi: 10.1161/STROKEAHA.111.000269. PubMed PMID: 23444306.