- Kawano Y, Roccaro AM, Ghobrial IM, Azzi J. Multiple Myeloma and the Immune Microenvironment. Curr Cancer Drug Targets. 2017;17:806-18. doi: 10.2174/1568009617666170214102301. PubMed PMID: 28201978.
- Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12:298-306. doi: 10.1038/nrc3245. PubMed PMID: 22419253.
- Garcia-Dominguez DJ, Hontecillas-Prieto L, Palazon-Carrion N, Jimenez-Cortegana C, Sanchez-Margalet V, de la Cruz-Merino L. Tumor Immune Microenvironment in Lymphoma: Focus on Epigenetics. Cancers (Basel). 2022;14. doi: 10.3390/cancers14061469. PubMed PMID: 35326620; PubMed Central PMCID: PMCPMC8946119.
- Menter T, Tzankov A. Lymphomas and Their Microenvironment: A Multifaceted Relationship. Pathobiology. 2019;86:225-36. doi: 10.1159/000502912. PubMed PMID: 31574515.
- Aldinucci D, Gloghini A, Pinto A, Colombatti A, Carbone A. The role of CD40/CD40L and interferon regulatory factor 4 in Hodgkin lymphoma microenvironment. Leuk Lymphoma. 2012;53:195-201. doi: 10.3109/10428194.2011.605190. PubMed PMID: 21756027.
- Cha Z, Qian G, Zang Y, Gu H, Huang Y, Zhu L, et al. Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway. Exp Cell Res. 2017;350:154-60. doi: 10.1016/j.yexcr.2016.11.017. PubMed PMID: 27888017.
- Desantis V, Savino FD, Scaringella A, Potenza MA, Nacci C, Frassanito MA, et al. The Leading Role of the Immune Microenvironment in Multiple Myeloma: A New Target with a Great Prognostic and Clinical Value. J Clin Med. 2022;11. doi: 10.3390/jcm11092513. PubMed PMID: 35566637; PubMed Central PMCID: PMCPMC9105926.
- Benson DM, Jr., Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood. 2010;116:2286-94. doi: 10.1182/blood-2010-02-271874. PubMed PMID: 20460501; PubMed Central PMCID: PMCPMC3490105.
- Lopes R, Caetano J, Ferreira B, Barahona F, Carneiro EA, Joao C. The Immune Microenvironment in Multiple Myeloma: Friend or Foe? Cancers (Basel). 2021;13. doi: 10.3390/cancers13040625. PubMed PMID: 33562441; PubMed Central PMCID: PMCPMC7914424.
- Williams P, Basu S, Garcia-Manero G, Hourigan CS, Oetjen KA, Cortes JE, et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer. 2019;125:1470-81. doi: 10.1002/cncr.31896. PubMed PMID: 30500073; PubMed Central PMCID: PMCPMC6467779.
- Chen Y, Li J, Xu L, Gaman MA, Zou Z. The genesis and evolution of acute myeloid leukemia stem cells in the microenvironment: From biology to therapeutic targeting. Cell Death Discov. 2022;8:397. doi: 10.1038/s41420-022-01193-0. PubMed PMID: 36163119; PubMed Central PMCID: PMCPMC9513079.
- Simioni C, Conti I, Varano G, Brenna C, Costanzi E, Neri LM. The Complexity of the Tumor Microenvironment and Its Role in Acute Lymphoblastic Leukemia: Implications for Therapies. Front Oncol. 2021;11:673506. doi: 10.3389/fonc.2021.673506. PubMed PMID: 34026651; PubMed Central PMCID: PMCPMC8131840.
- Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146:772-84. doi: 10.1016/j.cell.2011.07.033. PubMed PMID: 21871655; PubMed Central PMCID: PMCPMC3387678.
- Fu D, Zhang B, Wu S, Zhang Y, Xie J, Ning W, et al. Prognosis and Characterization of Immune Microenvironment in Acute Myeloid Leukemia Through Identification of an Autophagy-Related Signature. Front Immunol. 2021;12:695865. doi: 10.3389/fimmu.2021.695865. PubMed PMID: 34135913; PubMed Central PMCID: PMCPMC8200670.
|