- Turgut MD, Attar N, Korkmaz Y, Gokcelik A. Comparison of shear bond strengths of orthodontic brackets bonded with flowable composites. Dent Mater J. 2011; 30: 66-71.
- Nuri MS, Araghbidi KM, Eslami AG, Akbari SA. Effect of incorporating nano-hydroxyapatite and nano-zinc oxide into resin modified glass lonomer cement on metal br-acket debonding. J Islam Dent Assoc Iran. 2015; 27: 17-23.
- Almosa N, Zafar H. Incidence of orthodontic brackets detachment during orthodontic treatment: a systematic review. Pak J Med Sci. 2018; 34: 744-750.
- Condò R, Mampieri G, Cioffi A, Cataldi ME, Frustaci I, Giancotti A, et al. Physical and chemical mechanisms involved in adhesion of orthodontic bonding composites: in vitro BMC Oral Health. 2021; 21: 1-2.
- Barkmeier WW, Cooley RL. Laboratory evaluation of adhesive systems. Oper Dent. 1992; 5: 50-61.
- Bakhadher W, Halawany H, Talic N, Abraham N, Jacob V. Factors affecting the shear bond strength of orthodontic brackets: a review of in vitro Acta Med. 2015; 58: 43-48.
- Almeida LF, Martins LP, Martins RP. Effects of reducing light-curing time of a high-power LED device on shear bond strength of brackets. J Orofac Orthop Fortschritteder Kieferorthopädie. 2018; 79: 352-358.
- Abu Alhaija ES, Abu AlReesh IA, AlWahadni AM. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces. Eur J Orthod. 2010; 32: 274-280.
- Lucchese A, Bondemark L, Marcolina M, Manuelli M. Changes in oral microbiota due to orthodontic appliances: a systematic review. J Oral Microbiol. 2018; 10: 1476645.
- Chambers C, Stewart S, Su B, Sandy J, Ireland A. Prevention and treatment of demineralisation during fixed appliance therapy: a review of current methods and future applications. Br Dent J. 2013; 215: 505-511.
- Poosti M, Ramazanzadeh B, Zebarjad M, Javadzadeh P, Naderinasab M, Shakeri MT. Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthod. 2013; 35: 676-679.
- Borzabadi-Farahani A, Borzabadi E, Lynch E. Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontol Scand. 2014; 72: 413-417.
- Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent. 2008; 36: 450-455.
- Degrazia FW, Leitune VC, Garcia IM, Arthur RA, Samuel SM, Collares FM. Effect of silver nanoparticles on the physicochemical and antimicrobial properties of an orthodontic adhesive. J Appl Oral Sci. 2016; 24: 404-410.
- Melo MA, Cheng L, Zhang K, Weir MD, Rodrigues LK, Xu HH. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent Mater. 2013; 29: 199-210.
- Liang K, Wang S, Tao S, Xiao S, Zhou H, Wang P, et al. Dental remineralization via poly (amido amine) and restorative materials containing calcium phosphate nanoparticles. Int J Oral Sci. 2019; 11: 1-2.
- Hulla JE, Sahu SC, Hayes AW. Nanotechnology: History and future. Hum Exp Toxicol. 2015; 34: 1318-1321.
- Moothedath M, Moothedath M, Jairaj A, Harshitha B, Baba SM, Khateeb SU. Role of nanotechnology in dentistry: Systematic review. J Int Soc Prev Community Dent. 2019; 9: 535-541.
- Sriram K, Vishnupriya V, Gayathri R. Review on the role of Nanotechnology in Dentistry and Medicine. Res J Pharm Technol. 2016; 9: 1249-1252.
- Moraes G, Zambom C, Siqueira WL. Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals. 2021; 14: 752.
- Sodagar A, Akhoundi MS, Bahador A, Jalali YF, Behzadi Z, Elhaminejad F, et al. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dental Press J Orthod. 2017; 22: 67-74.
- Sodagar A, Bahador A, Pourhajibagher M, Ahmadi B, Baghaeian P. Effect of addition of Curcumin Nanoparticles on antimicrobial property and shear bond Strength of orthodontic composite to bovine enamel. J Dent. 2016; 13: 373–382.
- Sodagar A, Akhavan A, Arab S, Bahador A, Pourhajibagher M, Soudi A. Evaluation of the effect of propolis nanoparticles on antimicrobial properties and shear bond strength of orthodontic composite bonded to bovine enamel. Front Dent. 2019; 16: 96-104.
- Lee SJ, Heo M, Lee D, Han S, Moon JH, Lim HN, et al Preparation and characterization of antibacterial orthodontic resin containing silver nanoparticles. Appl Surf Sci. 2018; 432: 317-323.
- Akhavan A, Sodagar A, Mojtahedzadeh F, Sodagar K. Investigating the effect of incorporating nanosilver/ nanohydroxyapatite particles on the shear bond strength of orthodontic adhesives. Acta Odontol Scand. 2013; 71: 1038-1042.
- Liu Y, Zhang L, Niu LN, Yu T, Xu HH, Weir MD, et al. Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles. J Dent. 2018; 72: 53-63.
- Reddy AK, Kambalyal PB, Patil SR, Vankhre M, Khan MY, Kumar TR. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive. J Orthod Sci. 2016; 5: 127-131.
- Salma K, Berzina-Cimdina L, Borodajenko N. Calcium phosphate bioceramics prepared from wet chemically precipitated powders. Process Appl Ceram. 2010; 4: 45-51.
- Vecstaudza J, Locs J. Novel preparation route of stable amorphous calcium phosphate nanoparticles with high specific surface area. J Alloys Compd. 2017; 700: 215-222.
- Amiri O, Salavati-Niasari M, Bagheri S, Yousefi AT. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@ PVP). Sci Rep. 2016; 6: 25227-25227.
- Tavassoli-Hojjati S, Atai M, Haghgoo R, Rahimian-Imam S, Kameli S, Ahmaian-Babaki F, et al. Comparison of various concentrations of tricalcium phosphate nanoparticles on mechanical properties and remineralization of fissure sealants. J Dent (Tehran). 2014; 11: 379-388.
- Weir MD, Chow LC, Xu HH. Remineralization of demineralized enamel via calcium phosphate nanocomposite. J Dent Res. 2012; 91: 979-984.
- Blöcher S, Frankenberger R, Hellak A, Schauseil M, Roggendorf MJ, Korbmacher-Steiner HM. Effect on enamel shear bond strength of adding microsilver and nanosilver particles to the primer of an orthodontic adhesive. BMC Oral Health. 2015; 15: 1-9.
- Hocevar RA, Vincent HF. Indirect versus direct bonding: bond strength and failure location. Am J Orthod Dentofacial Orthop. 1988; 94: 367-371.
- Arjmand N, Boruziniat A, Zakeri M, Mohammadipour HS. Microtensile bond strength of resin cement primer containing nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) to human dentin. J Adv Prosthodont. 2018; 10: 177-183.
- Yamamoto K, Ohashi S, Aono M, Kokubo T, Yamada I, Yamauchi J. Antibacterial activity of silver ions implanted in SiO2 filler on oral streptococci. Dent Mater. 1996; 12: 227-229.
- Moreau JL, Sun L, Chow LC, Xu HH. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. J Biomed Mater Res Part B: Applied Biomaterials. 2011; 98: 80-88.
- Degrazia FW, Leitune VC, Garcia IM, Arthur RA, Samuel SM, Collares FM. Effect of silver nanoparticles on the physicochemical and antimicrobial properties of an orthodontic adhesive. J Appl Oral Sci. 2016; 24: 404-410.
- Eslamian L, Borzabadi-Farahani A, Karimi S, Saadat S, Badiee MR. Evaluation of the shear bond strength and antibacterial activity of orthodontic adhesive containing silver nanoparticle, an in vitro Nanomaterials. 2020; 10: 1466.
- Melo MA, Weir MD, Passos VF, Powers M, Xu HH. Phactivated nano-amorphous calcium phosphate-based cement to reduce dental enamel demineralization. Artif Cells Nanomed Biotechnol. 2017; 45: 1778-1785.
- Rahul P, Ghosh P, Bhattacharya SK, Yoshimura K. Controlling factors of rainwater and water vapor isotopes at Bangalore, India: Constraints from observations in 2013 Indian monsoon. J Geophys Res Atmos. 2016; 121: 13936-13952.
- Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater. 2009; 25: 206-213.
|