تعداد نشریات | 20 |
تعداد شمارهها | 1,149 |
تعداد مقالات | 10,518 |
تعداد مشاهده مقاله | 45,415,526 |
تعداد دریافت فایل اصل مقاله | 11,291,330 |
Sources, extraction and biological activities of cinnamaldehyde | ||
Trends in Pharmaceutical Sciences | ||
مقاله 6، دوره 8، شماره 4، اسفند 2022، صفحه 263-282 اصل مقاله (710.91 K) | ||
نوع مقاله: Review Article | ||
شناسه دیجیتال (DOI): 10.30476/tips.2022.96263.1160 | ||
نویسندگان | ||
Anna Asheahe Ibi* 1؛ Christal Kabele Kyuka1، 2 | ||
1Biotechnology Advanced Research Centre, Sheda Science and Technology Complex, P.M.B 186, Garki, Abuja, Nigeria | ||
2Department of Crop and Horticultural Science, Pan African University for Life and Earth Sciences Institute (Including Health and Agriculture), University of Ibadan, Nigeria. | ||
چکیده | ||
Cinnamaldehyde is the prevalent bioactive part of cinnamon essential oil which is liable for its regular scent and can be gotten from the bark, leaves, and twigs of various Cinnamomum species. Cinnamaldehyde is known to be generally considered non-toxic due to its high tolerance in animals and humans. Various extraction methods have been used for extracting cinnamaldehyde and different phytochemicals from plants. The methods generally adopted for cinnamaldehyde extraction are hydro distillation, supercritical carbon dioxide extraction, ultrasound-assisted extraction, microwave-assisted hydro distillation, and water steam extraction. Cinnamaldehyde has been documented to have different useful properties against disease conditions as a result of oxidative stress, inflammation, loss of neurons, hyperglycemia, and malignant growth. Likewise, cinnamaldehyde has been recorded to possess strong antimicrobial activity against a wide range of pathogenic and food waste microorganisms. The mechanism through which cinnamaldehyde exerts these effects have been associated with the prevention of reactive oxygen species and reactive nitrogen species generation, free radical scavenging activity, inhibiting inflammatory cytokines, and disruption of the cell membrane of microorganisms. This article gives a thorough report of the sources, extraction techniques, validated therapeutic potentials and mechanisms of cinnamaldehyde. It likewise features other applications of cinnamaldehyde in agriculture, food, and other industries. | ||
کلیدواژهها | ||
Antimicrobial؛ Anticancer؛ Antidiabetes؛ Cinnamon؛ Cinnamaldehyde | ||
مراجع | ||
1. Almalki DA, Alghamdi SA, Al-Attar AM. Comparative Study on the Influence of Some Medicinal Plants on Diabetes Induced by Streptozotocin in Male Rats. Biomed Res Int. 2019 Feb 27;2019:3596287. doi: 10.1155/2019/3596287. PMID: 30937310; PMCID: PMC6415286. 2. Ugboko HU, Nwinyi OC, Oranusi SU, Fatoki TH, Omonhinmin CA. Antimicrobial Importance of Medicinal Plants in Nigeria. ScientificWorldJournal. 2020 Sep 22;2020:7059323. doi: 10.1155/2020/7059323. PMID: 33029108; PMCID: PMC7528132. 3. Akinmoladun AC, Ibukun EO, Dan-Ologe IA. Phytochemical constituents and antioxidant properties of extracts from the leaves of Chromolaena odorata. Sci Res Essays. 2007;2(6):191-194 4. Pathirana H, Wimalasena SHMP, de Silva BCJ, Hossain S, Heo GJ. Antibacterial activity of cinnamon (Cinnamomum zeylanicum) essential oil and cinnamaldehyde against fish pathogenic bacteria isolated from cultured olive flounder Paralichthys olivaceus. Indian J Fish. 2019;66(2):86-92. doi: 10.21077/ijf.2019.66.2.85023-12. 5. Tajkarimi MM, Ibrahim SA, Cliver DO. Antimicrobial herb and spice compounds in food. Food Control. 2010;21:1199-1218. 6. Dorri M, Hashemitabar S, Hosseinzadeh H. Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem Toxicol. 2018 Jul;41(3):338-351. doi: 10.1080/01480545.2017.1417995. Epub 2018 Jan 10. PMID: 29319361. 7. Wang Y, Feng K, Yang H, Yuan Y, Yue T. Antifungal mechanism of cinnamaldehyde and citral combination against Penicillium expansum based on FT-IR fingerprint, plasma membrane, oxidative stress and volatile profile. RSC Adv. 2018 Feb 5;8(11):5806-5815. doi: 10.1039/c7ra12191a. PMID: 35539597; PMCID: PMC9078163. 8. Buglak NE, Jiang W, Bahnson ESM. Cinnamic aldehyde inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia in Zucker Diabetic Fatty rats. Redox Biol. 2018 Oct;19:166-178. doi: 10.1016/j.redox.2018.08.013. Epub 2018 Aug 24. PMID: 30172101; PMCID: PMC6122148. 9. Guo W, Wang X, Huang J, Wei C, Wang J, Song L, et al. preparation and antimicrobial effect of cinnamaldehyde-based sustained release fumigant tablet for grain storage. J Mater Res Technol. 2020;9(6):14122-14130. 10. Zhang W, Gao J, Cheng C, Zhang M, Liu W, Ma X, et al. Cinnamaldehyde Enhances Antimelanoma Activity through Covalently Binding ENO1 and Exhibits a Promoting Effect with Dacarbazine. Cancers (Basel). 2020 Jan 29;12(2):311. doi: 10.3390/cancers12020311. PMID: 32013122; PMCID: PMC7072165. 11. Niu A, Wu H, Ma F, Tan S, Wang G, Qiu W. The antifungal activity of cinnamaldehyde in vapour phase against Aspergillus niger isolated from spoiled paddy. LWT. 2022;159:113181. 12. Qu S, Yang K, Chen L, Liu M, Geng Q, He X, et al. Cinnamaldehyde, a Promising Natural Preservative Against Aspergillus flavus. Front Microbiol. 2019 Dec 18;10:2895. doi: 10.3389/fmicb.2019.02895. PMID: 31921070; PMCID: PMC6930169. 13. Shen Y, Kahramanoğlu I, Chen C, et al. Application of cinnamaldehyde for the postharvest storage of fresh horticultural products. Horticult Int J. 2021;5(3):103-105. DOI: 10.15406/hij.2021.05.00212 14. Wang R, Wang R, Yang, B. Extraction of essential oils from five cinnamon leaves and identification of their volatile compound compositions. Innov. Food Sci Emerg Technol. 2009;10(2):289-292. 15. Kelly S, Brodie C. Hilkert A. Isotopic-Spectroscopic Technique: Stable Isotope-Ratio Mass Spectrometry (IRMS) In modern techniques for food Authentication, Da-Wen Sun (Ed.). Vol 11. MA, USA.; Academic press, 2018. p.349-413 16. Vangalapati M, Satya S, Prakash S, Avanigadda S, Kiran Sree N, Surya D, et al. A review on pharmacological activities and clinical effects of cinnamon species. Res J Pharm Biol Chem Sci. 2012;3(1):653–663. 17. Chen PY, Yu JW, Lu FL, Lin MC, Cheng HF. Differentiating parts of Cinnamomum cassia using LC-qTOF-MS in conjunction with principal component analysis. Biomed Chromatogr. 2016 Sep;30(9):1449-57. doi: 10.1002/bmc.3703. Epub 2016 Mar 2. PMID: 26873449. 18. Fan Q, Huang F, Zhou L, He W, Jiang X, Na Z, et al. Development of a strategy for a quick process for separation of volatile compounds in counter-current chromatography: purification of cinnamaldehyde from Cinnamomum cassia by high performance counter-current chromatography. Prep Biochem Biotechnol. 2021;51(10):1056-1059. doi: 10.1080/10826068.2021.1894444. Epub 2021 Mar 28. PMID: 33775215. 19. Moreta S, Cahyono E, Affandi N, Fadil F. Kurniawan C. Polymeric and nonpolymeric nanofiber of cinnamaldehyde from cinnamon oil (Cinnamomum Zeylanicum). J Phys Conf Ser. 2020;1567 022035. 20. Budiana IGN, Moses KT, and Agus S. Characterization of Cinnamadehyde Compound Isolated from Cinnamon Oil and Its Salmonella Typhy Antibacterial Activity. J Appl Chem Sci. 2018;5(2):469-472. https://dx.doi.org/10.22341/jacs.on.00502p469 21. Baseri H, Haghighi-Asl, Lotfollahi MN. Effects of Operating Parameters on the Cinnamaldehyde Content of extracted essential Oil Using Various Methods. Chem Eng Technol. 2010;33(2):267-274. 22. Yu M, Wang S, Zhu H, Wang H, Yao R, Li F, et al. In-situ reactive heat breaking cell wall by SO3 hydration: innovative cell-wall breaking technique to enhance extraction of cinnamaldehyde from cinnamon. Prep Biochem Biotechnol. 2021;51(9):833-841. doi: 10.1080/10826068.2020.1867867. Epub 2021 Jan 10. PMID: 33427036. 23. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, et al. Techniques for extraction of bioactive compounds from plant materials: A review. J Food Engin. 2013;117:426-436. 24. Aramrueang N, Asavasanti S, Khanunthong A. Leafy Vegetables. In Integrated Processing Technologies for Food and Agricultural By-products. Academic Press; 2019. p. 245-272. https://doi.org/10.1016/B978-0-12-814138-0-00010-1 25. Kargavkar AM, Patel SB, Pate NB. Extraction of Cinnamon Essential Oil from Cinnamon Bark using Hydro Distillation Method. Int J Sci Res Dev. 2017;5(04):663-664 26. Jeyaratnam N, Nour AH, Akindoyo JO. Comparative study between hydrodistillation and microwave-assisted hydrodistillation for extraction of cinnamomum cassia oil. ARPN J Engin Appl Sci. 2016;11(4):2647–2652 27. Kasim NN, Ismail SNAS, Masdar ND, Hamid FA, Nawawi WI. Extraction and potential of cinnamon essential oil towards repllency and insecticidal activity. Int J Sci Res Public. 2014;4(7):1-6. 28. Vihanova K, Houdkova M, Promgool T, Urbanova K, Kanokmedhakul S, Kokoska L. Invitro growth-inhibitory effect of essential oils and supercriticalcarbon dioxide extracts from Cinnamomum spp. barks andfruits against food bacterial pathogens in liquid and vaporphase. J Food Saf. 2021;e12900. 29. Zhou J, Yuan X, Li L, Zhang T, Wang B. Comparison of different methods for extraction of Cinnamom iramulus: yield, chemical composition and in vitro antiviral activities. Nat Prod Res. 2017;31(24):2909-2913, DOI:10.1080/14786419.2017.1299724 30. Alsalim HA, Shawkat MS, Khwaidy M. Anitbacteral activity of Cinnamomum zeylanicum bark oil and cinnamaldehyde on some locallu isolated pathogenic bacteria. World J Pharm Res. 2017;6(2):174-185. Doi: 10.20959/wjpr20172-7707 31. Senhaji O, Faid M, Kalalou I. Inactivation of Escherichia coli O157:H7 by essential oil from Cinnamomum zeylanicum. Braz J Infect Dis. 2007 Apr;11(2):234-6. doi: 10.1590/s1413-86702007000200013. PMID: 17625768. 32. Ndlela SC, de Moura JMLN, Olson NK, Johnson LA. Aqueous extraction of oil and protein from soybeans with subcritical water. J Am Oil Chem Soc. 2012;89:1145-1153. Doi: 10.1007/s11746-011-1993-7 33. Hassas-Roudsari M, Chang PR, Pegg RB, Tyler RT. Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chem. 2009;114:717-726. doi: 10.1016/j.foodchem.2008.09.097 34. Barbra FJ, Zhu ZZ, Koubaa M. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci Technol. 2016;49:96–109. doi: 10.1016/j.tifs.2016.01.006 35. Getachew AT, Cho YG, Chun BS. Effect of pretreatments on isolation of bioactive polysaccharides from spent coffee grounds using subcritical water. Int J Biol Macromol. 2018;109:711-719. doi: 10.1016/j.jbiomac.2017.12.120 36. Ko MJ, Kwon HL, Chung MS. Pilot- scale subcritical water extraction of flavonoids from satsuma Mandarin (Citrus unshiu Markovich) peel. Innovative Food Science & Emerging Technologies. 2016;38:175–181.https://doi.org/10.1016/j.ifset.2016.10.008 37. Lee JH, Ko MJ, Chung MS. Subcritical water extraction of bioactive components from red ginseng (Panax ginseng C.A. Meyer). J Supercrit Fluids. 2018;133:177-183. doi" 10.1016/j.supflu.2017.09.029 38. Nastić N, Švarc-Gajić J, Delerue-Matos C, Barroso MF, Soares C, Moreira MM, et al. Subcritical water extraction as an environmentally-friendlytechnique to recover bioactive compounds from traditional Serbian medicinal plants. Ind Crops Prod. 2018;111:579-589. 39. Pedrasa B, Salema-Oom M, Ša-Nogueirab I, Simȍesa P, Paiva A, Barreiros S. Valorization of white wine grape pomace through application of subcritical water: Analysis of extraction, hydrolysis, and biological activity of the extracts obtained. J Supercrit Fluids. 2017;128:138–144. 40. Tomšik A, Pavlic B, Vladić J, Cindric M, Jovanov P, Sakac M, et al. Subcritical water extraction of wild garlic (Allium ursinum L.) and process optimization by response surface methodology. J Supercrit Fluids. 2017;128:79-88. Doi: 10.1016/j.supflu.2017.05.012 41. Yan Z, Luo XP, Cong JL, Zhang HH, Ma HL, Duan YQ. Subcritical water extraction, identification and antiproliferation ability on HepG2 of polyphenols from lotus seed epicarp. Ind Crops Prod. 2019;29:472-479. doi: 10.1016/j.indcrop.2018.12.031 42. Jayawardena B, Smith RM. Superheated water extraction of essential oils from Cinnamomum zeylanicum (L.). Phytochem Anal. 2010 Sep-Oct;21(5):470-2. doi: 10.1002/pca.1221. PMID: 20333616. 43. Eikani MH, Golmohammad F, Sadr ZB, Amoli HS. Mirza M. Optimization of superheated water extraction of essential oils from cinnamon bark using response surface methodology. J Essent Oil Bear PL. 2013;16(6):740-748. doi:10.1080/0972060X.2013.813236 44. Guo J, Yang RF, Fan XD, Qiu TQ. Extraction of essential oil from cinnamon by subcritical water. Chemistry & Industry of Forest Products. 2014;34(3):92–98. 45. Barrales F M, Rezende CA, Martínez J. Supercritical CO2 extraction of passion fruit (Passiflora edulis sp.) seed oil assisted by ultrasound. J Supercrit Fluids. 2015;104:183-192. doi: 10.1016/j.supflu.2015.06.006 46. Hu AJ, Zhang ZH, Zheng J, Wang YM, Chen QX, Liu R, et al. Optimizations and comparison of two supercritical extractions of adlay oil. Innov Food Sci Emerg Technol. 2012;13:128–133. https://doi.org/10.1016/j.fset.2011.10.002 47. Koubaa M, Mhemdi H, Fages J. Recovery of valuable components and inactivating microorganisms in the agro-food industry with ultrasound-assisted supercritical fluid technology. J Supercrit Fluids. 2018;134:71-79. 48. Ma Q, Fan X, Liu X, Qiu T, Jiang J. Ultrasound-enhanced subcritical water extraction of essential oils from Kaempferia galangal L. and their comparative antioxidant activities. Sep Purif Technol. 2015;150:73-79. doi:10.1016/j.seppur.2015.06.013. 49. Chao Z, Ri-Fun Y, Tai-Qiu Q. Ultrasound-enhanced subcritical water extraction of polysaccharides from Lycium barbarum L. Sep Purif Technol. 2013;120:141-147. doi: 10.1016/j.seppur.2013.09.044 50. Guo J, Yang R, Gong Y, Hu K, Hu Y, Songa FL. Optimization and evaluation of the ultrasound-enhanced subcritical water extraction of cinnamon bark oil. LWT. 2021;141:111673. https://doi.org/10.1016/j.lwt.2021.111673 51. De Castro MDL, Garcıa-Ayuso LE. Soxhlet extraction of solid materials: An outdated technique wit promising innovative future. Anal Chim Acta. 1998;369(1-2):1-10. doi: 10.1016/S0003-2670(98)00233-5 52. Ngamwonglumlert L, Devahastin S, Chiewchan N. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit Rev Food Sci Nutr. 2017 Oct 13;57(15):3243-3259. doi: 10.1080/10408398.2015.1109498. PMID: 26517806. 53. Masghati S, Ghoreishi SM. (2018). Supercritical CO2 extraction of cinnamaldehyde and eugenol from cinnamon bark: Optimization of operating conditions via response surface methodology. J Supercrit Fluids. 140, 62-71.doi: doi.org/j.supflu.2018.06.002 54. Doktycz SJ, Suslick KS. Interparticle collisions driven by ultrasound. Science. 1990;247(4946):1067-1069. Doi: 10.1126/science.2309118 55. Wen C, Zhang J, Zhang H, Dzah CS, Zandile M, Duan Y, Ma H, Luo X. Advances in ultrasound assisted extraction of bioactive compounds from cash crops - A review. Ultrason Sonochem. 2018 Nov;48:538-549. doi: 10.1016/j.ultsonch.2018.07.018. Epub 2018 Jul 18. PMID: 30080583. 56. Tekin K, Akalın MK, Şeker MG. Ultrasound bath-assisted extraction of essential oils from clove using central composite design. Ind Crops Prod. 2015;77:954–960 57. Foudah AI, Shakeel F, Alqarni MH, Ross SA, Salkini MA, Alam P. Simultaneous Estimation of Cinnamaldehyde and Eugenol in Essential Oils and Traditional and Ultrasound-Assisted Extracts of Different Species of Cinnamon Using a Sustainable/Green HPTLC Technique. Molecules. 2021 Apr 3;26(7):2054. doi: 10.3390/molecules26072054. PMID: 33916710; PMCID: PMC8038348. 58. Aryati WD, Nadhira A, Febianli D, Fransisca F, Mun’im A. Natural deep eutectic solvents ultrasound-assisted extraction (NADES-UAE) of trans-cinnamaldehyde and coumarin from cinnamon bark [Cinnamomum burmannii (Nesss & T. Nees) Blume]. J Res Pharm. 2020;24(3):389-398. doi: 10.35333/jrp.2020.162 59. Ameer K, Shahbaz HM, Kwon JH. Green extraction methods forpolyphenols from plant matrices and their byproducts: A review. Compr Rev Food Sci. F. 2017;16(2): 295–315. doi: 10.1011/1541-4337.12253. 60. Ameer K, Bae SW, Jo Y, Chung N, Gao Y, Kwon JH. Optimization and modeling for heat reflux extraction of total yield, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves. Sep Sci Technol. 2017;52(7):1193-1205 https://doi.org/10.1080/01496395.2017.1285313 61. Lee HG, Jo Y, Ameer K, Kwon JH. Optimization of green extraction methods for cinnamic acid and cinnamaldehyde from Cinnamon (Cinnamomum cassia) by response surface methodology. Food Sci Biotechnol. 2018 Jul 27;27(6):1607-1617. doi: 10.1007/s10068-018-0441-y. PMID: 30483424; PMCID: PMC6233399. 62. Ahmad I, Arifianti AE, Sakti AS, Saputri FC, Mun'im A. Simultaneous Natural Deep Eutectic Solvent-Based Ultrasonic-Assisted Extraction of Bioactive Compounds of Cinnamon Bark and Sappan Wood as a Dipeptidyl Peptidase IV Inhibitor. Molecules. 2020 Aug 23;25(17):3832. doi: 10.3390/molecules25173832. PMID: 32842548; PMCID: PMC7504365. 63. Sowbhagya HB, Chitra VN. Enzyme-assisted extraction of flavorings and colorants from plant materials. Crit Rev Food Sci Nutr. 2010 Feb;50(2):146-61. doi: 10.1080/10408390802248775. PMID: 20112157. 64. Hamburger M, Baumann D, Adler S. Supercritical carbon dioxide extraction of selected medicinal plants--effects of high pressure and added ethanol on yield of extracted substances. Phytochem Anal. 2004 Jan-Feb;15(1):46-54. doi: 10.1002/pca.743. PMID: 14979527. 65. Akanda MJ, Sarker MZ, Ferdosh S, Manap MY, Ab Rahman NN, Ab Kadir MO. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources. Molecules. 2012 Feb 10;17(2):1764-94. doi: 10.3390/molecules17021764. PMID: 22328076; PMCID: PMC6268233. 66. Hawthorne SB, Miller DJ. Direct comparison of soxhlet and low-and high temperature supercritical CO2 extraction efficiencies of organics from environmental solids. Anal Chem. 1994;66:4005-4012. 67. Wang L, Jin J, Liu X, Wang Y, Liu Y, Zhao Y, Xing F. Effect of Cinnamaldehyde on Morphological Alterations of Aspergillus ochraceus and Expression of Key Genes Involved in Ochratoxin A Biosynthesis. Toxins (Basel). 2018 Aug 22;10(9):340. doi: 10.3390/toxins10090340. PMID: 30135391; PMCID: PMC6162615. 68. Hearunyakij M, Phutdhawong W. (2022).The Process Optimization Of Microwave Assisted Extraction On Cinnamomum Verum J. Presl. Extraction Yield And Comparative Of Chemical Compositions To Supercritical Fluid Extraction And Hydrodistillation. Nat Volatiles & Essent. Oils. 2022;9(1):1343-1358 69. Marongiu B, Piras A, Porcedda S, Tuveri E, Sanjust E, Meli M, Sollai F, Zucca P, Rescigno A. Supercritical CO2 extract of Cinnamomum zeylanicum: chemical characterization and antityrosinase activity. J Agric Food Chem. 2007 Nov 28;55(24):10022-7. doi: 10.1021/jf071938f. Epub 2007 Oct 30. PMID: 17966976. 70. Jahangir MA, Shehzad A, Butt MS, Shahid B. Influence of supercritical fluid extract of Cinnamomum zeylanicum bark on physical, bioactive and sensory properties of innovative cinnamaldehyde-enriched chocolates. Czech J Food Sci. 2018;36: 28-36. doi:10.17221/237/2016-CJFS 71. Kürkcüoglu M, Baser KHC. Headspace volatiles of three Turkish plants. J Essent Oil Res. 2010;22(5):389-392. 72. Golmakani MT, Rezaei K. Comparison of microwave-assisted hydrodistillation withthe traditional hydrodistillation method in the extractionof essential oils from Thymus vulgaris L. Food Chem. 2008 Aug 15;109(4):925-30. doi: 10.1016/j.foodchem.2007.12.084. Epub 2008 Jan 26. PMID: 26050009. 73. Cano A, Ettcheto M, Espina M, López-Machado A, Cajal Y, Rabanal F, Sánchez-López E, Camins A, García ML, Souto EB. State-of-the-art polymeric nanoparticles as promising therapeutic tools against human bacterial infections. J Nanobiotechnology. 2020 Oct 31;18(1):156. doi: 10.1186/s12951-020-00714-2. PMID: 33129333; PMCID: PMC7603693. 74. Shen S, Zhang T, Yuan Y, Lin S, Xu J, Ye H. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control. 2015;47:196-202. doi:10.1016/j.foodcont.2014.07.003. 75. Ferro TA, Araújo JM, Dos Santos Pinto BL, Dos Santos JS, Souza EB, da Silva BL, et al. Cinnamaldehyde Inhibits Staphylococcus aureus Virulence Factors and Protects against Infection in a Galleria mellonella Model. Front Microbiol. 2016 Dec 21;7:2052. doi: 10.3389/fmicb.2016.02052. Erratum in: Front Microbiol. 2021 Jan 15;11:628074. PMID: 28066373; PMCID: PMC5174152. 76. He Z, Huang Z, Jiang W, Zhou W. Antimicrobial Activity of Cinnamaldehyde on Streptococcus mutans Biofilms. Front Microbiol. 2019 Sep 25;10:2241. doi: 10.3389/fmicb.2019.02241. PMID: 31608045; PMCID: PMC6773874. 77. Xu L, Tao N, Yang W, Jing G. Cinnamaldehyde damaged the cell membrane of Alternaria alternata and induced the degradation of mycotoxins in vivo. Ind Crops Prod. 2018;112:427-433. doi:10.1016/j.indcrop.2017.12.038 78. Fabra MJ, Castro-Mayorga JL, Randazzo W, Lagarón JM, López-Rubio A, Aznar R, et al. Efficacy of Cinnamaldehyde Against Enteric Viruses and Its Activity After Incorporation Into Biodegradable Multilayer Systems of Interest in Food Packaging. Food Environ Virol. 2016 Jun;8(2):125-32. doi: 10.1007/s12560-016-9235-7. Epub 2016 Mar 23. PMID: 27008344. 79. Firmino DF, Cavalcante TTA, Gomes GA, Firmino NCS, Rosa LD, de Carvalho MG, Catunda FEA Jr. Antibacterial and Antibiofilm Activities of Cinnamomum Sp. Essential Oil and Cinnamaldehyde: Antimicrobial Activities. ScientificWorldJournal. 2018 Jun 6;2018:7405736. doi: 10.1155/2018/7405736. PMID: 29977171; PMCID: PMC6011056. 80. Albano M, Crulhas BP, Alves FCB, Pereira AFM, Andrade BFMT, Barbosa LN, et al. Antibacterial and anti-biofilm activities of cinnamaldehyde against S. epidermidis. Microb Pathog. 2019 Jan;126:231-238. doi: 10.1016/j.micpath.2018.11.009. Epub 2018 Nov 12. PMID: 30439400. 81. Liu Y, Zhang Y, Zhou Y, Wang T, Deng X, Chu X, et al. Cinnamaldehyde inhibits type three secretion system in Salmonella enterica serovar Typhimurium by affecting the expression of key effector proteins. Vet Microbiol. 2019 Dec;239:108463. doi: 10.1016/j.vetmic.2019.108463. Epub 2019 Oct 21. PMID: 31767076. 82. Yin L, Chen J, Wang K, Geng Y, Lai W, Huang X, et al. Study the antibacterial mechanism of cinnamaldehyde against drug-resistant Aeromonas hydrophila in vitro. Microb Pathog. 2020 Aug;145:104208. doi: 10.1016/j.micpath.2020.104208. Epub 2020 Apr 20. PMID: 32325237. 83. Sim JXF, Khazandi M, Pi H, Venter H, Trott DJ, Deo P. Antimicrobial effects of cinnamon essential oil and cinnamaldehyde combined with EDTA against canine otitis externa pathogens. J Appl Microbiol. 2019 Jul;127(1):99-108. doi: 10.1111/jam.14298. Epub 2019 May 21. PMID: 31050849. 84. Sun Q, Shang B, Wang L, Lu Z, Liu Y. Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus. Appl Microbiol Biotechnol. 2016 Feb;100(3):1355-1364. doi: 10.1007/s00253-015-7159-z. Epub 2015 Nov 19. PMID: 26585445. 85. Wang P, Ma L, Jin J, Zheng M, Pan L, Zhao Y, et al. The anti-aflatoxigenic mechanism of cinnamaldehyde in Aspergillus flavus. Sci Rep. 2019 Jul 19;9(1):10499. doi: 10.1038/s41598-019-47003-z. PMID: 31324857; PMCID: PMC6642104. 86. Wang Y, Wang M, Li M, Zhao T, Zhou L. Cinnamaldehyde inhibits the growth of Phytophthora capsici through disturbing metabolic homoeostasis. PeerJ. 2021 Apr 30;9:e11339. doi: 10.7717/peerj.11339. PMID: 33987017; PMCID: PMC8092109. 87. Liu R, He T, Zeng N, Chen T, Gou L, Liu J. Mechanism of anti-influenza virus of cinnamaldehyde and volatile oils from Ramulus cinnamomi. Med plant. 2015;6(1-2):4-8 88. Uchi H, Yasumatsu M, Morino-Koga S, Mitoma C, Furue M. Inhibition of aryl hydrocarbon receptor signaling and induction of NRF2-mediated antioxidant activity by cinnamaldehyde in human keratinocytes. J Dermatol Sci. 2017 Jan;85(1):36-43. doi: 10.1016/j.jdermsci.2016.10.003. Epub 2016 Oct 4. PMID: 27720465. 89. Tanaka Y, Uchi H, Furue M. (2019). Antioxidant cinnamaldehyde attenuates UVB-induced photoaging. J Dermatol Sci. 2019;96(3):151-158. doi:10.1016/j.jdermsci.2019.11.001 90. Saifudin A, Kadota S, Tezuka Y. Protein tyrosine phosphatase 1B inhibitory activity of Indonesian herbal medicines and constituents of Cinnamomum burmannii and Zingiber aromaticum. J Nat Med. 2013 Apr;67(2):264-70. doi: 10.1007/s11418-012-0674-7. Epub 2012 May 30. PMID: 22645080. 91. Gao J, Zhang M, Niu R, Gu X, Hao E, Hou X, et al. The combination of cinnamadelhyde and kaempferol ameliorates glucose and lipid metabolism disorders by enhancing lipid metabolism via AMPK activation. J Funct Foods. 2021;83;104556.doi: 10.1016/j.jff.2021.104556 92. Abdelmageed ME, Shehatou GS, Abdelsalam RA, Suddek GM, Salem HA. Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. Naunyn Schmiedebergs Arch Pharmacol. 2019 Feb;392(2):243-258. doi: 10.1007/s00210-018-1583-4. Epub 2018 Nov 20. PMID: 30460386. 93. Cheng WX, Zhong S, Meng XB, Zheng NY, Zhang P, Wang Y, Qin L, Wang XL. Cinnamaldehyde Inhibits Inflammation of Human Synoviocyte Cells Through Regulation of Jak/Stat Pathway and Ameliorates Collagen-Induced Arthritis in Rats. J Pharmacol Exp Ther. 2020 May;373(2):302-310. doi: 10.1124/jpet.119.262907. Epub 2020 Feb 6. PMID: 32029577. 94. Muhammad JS, Zaidi SF, Shaharyar S, Refaat A, Usmanghani K, Saiki I, Sugiyama T. Anti-inflammatory effect of cinnamaldehyde in Helicobacter pylori induced gastric inflammation. Biol Pharm Bull. 2015;38(1):109-15. doi: 10.1248/bpb.b14-00609. PMID: 25744466. 95. Wu C, Zhuang Y, Jiang S, Tian F, Teng Y, Chen X, et al. Cinnamaldehyde induces apoptosis and reverses epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in non-small cell lung cancer. Int J Biochem Cell Biol. 2017 Mar;84:58-74. doi: 10.1016/j.biocel.2017.01.005. Epub 2017 Jan 16. PMID: 28093328. 96. Kim TW. Cinnamaldehyde induces autophagy-mediated cell death through ER stress and epigenetic modification in gastric cancer cells. Acta Pharmacol Sin. 2022 Mar;43(3):712-723. doi: 10.1038/s41401-021-00672-x. Epub 2021 May 12. PMID: 33980998; PMCID: PMC8888591. 97. Peterson DW, George RC, Scaramozzino F, LaPointe NE, Anderson RA, Graves DJ, et al. Cinnamon extract inhibits tau aggregation associated with Alzheimer's disease in vitro. J Alzheimers Dis. 2009;17(3):585-97. doi: 10.3233/JAD-2009-1083. PMID: 19433898. 98. Do J, Kim N, Jeon SH, Gee MS, Ju YJ, Kim JH, Oh MS, Lee JK. Trans-Cinnamaldehyde Alleviates Amyloid-Beta Pathogenesis via the SIRT1-PGC1α-PPARγ Pathway in 5XFAD Transgenic Mice. Int J Mol Sci. 2020 Jun 24;21(12):4492. doi: 10.3390/ijms21124492. PMID: 32599846; PMCID: PMC7352815. 99. Emamghoreishi M, Farrokhi MR, Amiri A, Keshavarz M. The neuroprotective mechanism of cinnamaldehyde against amyloid-β in neuronal SHSY5Y cell line: The role of N-methyl-D-aspartate, ryanodine, and adenosine receptors and glycogen synthase kinase-3β. Avicenna J Phytomed. 2019 May-Jun;9(3):271-280. PMID: 31143694; PMCID: PMC6526042. 100. Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, et al. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules. 2015 Nov 27;20(12):21138-56. doi: 10.3390/molecules201219753. PMID: 26633317; PMCID: PMC6331972. 101. Ahmad KA, Yuan Yuan D, Nawaz W, Ze H, Zhuo CX, Talal B, et al. Antioxidant therapy for management of oxidative stress induced hypertension. Free Radic Res. 2017 Apr;51(4):428-438. doi: 10.1080/10715762.2017.1322205. Epub 2017 May 9. PMID: 28427291. 102. Chopra B, Dhingra AK, Dhar KL. Psoralea corylifolia L. (Buguchi) - folklore to modern evidence: review. Fitoterapia. 2013 Oct;90:44-56. doi: 10.1016/j.fitote.2013.06.016. Epub 2013 Jul 4. PMID: 23831482. 103. Sharma UK, Sharma AK, Gupta A, Kumar R, Pandey A, Pandey AK. Pharmacological activities of cinnamaldehyde and eugenol: antioxidant, cytotoxic and anti-leishmanial studies. Cell Mol Biol (Noisy-le-grand). 2017 Jul 31;63(6):73-78. doi: 10.14715/cmb/2017.63.6.15. PMID: 28968213. 104. Germolec DR, Shipkowski KA, Frawley RP, Evans E. (2018). Markers of Inflammation. In: DeWitt, J., Rockwell, C., Bowman, C. (eds) Immunotoxicity Testing. Methods in Molecular Biology. 2018; Vol. 1803. Humana Press, New York, NY. doi:10.1007/978-1-4939-8549-4_5 105. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol. 2007 Feb;147(2):227-35. doi: 10.1111/j.1365-2249.2006.03261.x. PMID: 17223962; PMCID: PMC1810472. 106. Fleit HB. Chronic inflammation. Pathobiology of Human Disease: A dynamic Encyclopedia of disease mechanisms. Stony Brook University School of medicine, Stony Brook, NY, USA. 2014; p. 300-314. doi:1016/B978-0-12-386456-7.018-8-6 107. Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007 Dec 1;121(11):2373-80. doi: 10.1002/ijc.23173. PMID: 17893866. 108. Nikzamir A, Palangi A, Kheirollaha A, Tabar H, Malakaskar A, Shahbazian H, et al. Expression of Glucose Transporter 4 (GLUT4) is Increased by Cinnamaldehyde in C2C12 Mouse Muscle Cells. Iran Red Crescent Med J. 2014 Feb;16(2):e13426. doi: 10.5812/ircmj.13426. Epub 2014 Feb 4. PMID: 24719730; PMCID: PMC3965863. 109. Subash-Babu P, Alshatwi AA, Ignacimuthu S. Beneficial Antioxidative and Antiperoxidative Effect of Cinnamaldehyde Protect Streptozotocin-Induced Pancreatic β-Cells Damage in Wistar Rats. Biomol Ther (Seoul). 2014 Jan;22(1):47-54. doi: 10.4062/biomolther.2013.100. PMID: 24596621; PMCID: PMC3936432. 110. Hosni AA, Abdel-Moneim AA, Abdel-Reheim ES, Mohamed SM, Helmy H. Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPARγ, proinflammatory cytokines and oxidative stress. Biomed Pharmacother. 2017 Apr;88:52-60. doi: 10.1016/j.biopha.2017.01.054. Epub 2017 Jan 13. PMID: 28092845. 111. Zhao H, Wu H, Duan M, Liu R, Zhu Q, Zhang K, Wang L. Cinnamaldehyde Improves Metabolic Functions in Streptozotocin-Induced Diabetic Mice by Regulating Gut Microbiota. Drug Des Devel Ther. 2021 Jun 1;15:2339-2355. doi: 10.2147/DDDT.S288011. PMID: 34103897; PMCID: PMC8179756. 112. Çelik Z, Mert H, Comba B, Mert N. Effects of cinnamaldehyde on glucose-6-phosphate dehydrogenase activity, some biochemical and hematological parameters in diabetic rats. Biomarkers. 2022;27(3):270-277. doi: 10.1080/1354750X.2022.2032351 113. Hong SH, Ismail IA, Kang SM, Han DC, Kwon BM. Cinnamaldehydes in Cancer Chemotherapy. Phytother Res. 2016;30(5):754-767. doi:10.1002/ptr.5592 114. Liu Y, An T, Wan D, Yu B, Fan Y, Pei X. Targets and Mechanism Used by Cinnamaldehyde, the Main Active Ingredient in Cinnamon, in the Treatment of Breast Cancer. Front Pharmacol. 2020 Dec 9;11:582719. doi: 10.3389/fphar.2020.582719. PMID: 33536908; PMCID: PMC7848847. 115. Chiang YF, Chen HY, Huang KC, Lin PH, Hsia SM. Dietary Antioxidant Trans-Cinnamaldehyde Reduced Visfatin-Induced Breast Cancer Progression: In Vivo and In Vitro Study. Antioxidants (Basel). 2019 Dec 6;8(12):625. doi: 10.3390/antiox8120625. PMID: 31817697; PMCID: PMC6943554. 116. Mehraein F, Zamani M, Negahdar F, Shojaee A. Cinnamaldehyde attenuates dopaminergic neuronal loss in substatia nigra and induces midbrain catalase activityin a mouse model of Parkinson’s disease. J Basic Clin Pathophysiol. 2018; 6(1):9-16. 117. Zhu R, Liu H, Liu C, Wang L, Ma R, Chen B, et al. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol Res. 2017 Aug;122:78-89. doi: 10.1016/j.phrs.2017.05.019. Epub 2017 May 27. PMID: 28559210. 118. Ribeiro-Santos R, Andrade M, Madella D, Martinazzo AP, Moura LAG, de Melo NR, et al. Revisiting an ancient spice with medicinal purposes: Cinnamon. Trends Food Sci Technol. 2017;62:154-169. doi:10.1016j.tifs.2017.02.011 119. Ferro TAF, Souza EB, Suarez MAM, Rodrigues JFS, Pereira DMS, Mendes SJF, et al. Topical Application of Cinnamaldehyde Promotes Faster Healing of Skin Wounds Infected with Pseudomonas aeruginosa. Molecules. 2019 Apr 25;24(8):1627. doi: 10.3390/molecules24081627. PMID: 31027179; PMCID: PMC6515316. 120. Kucinska-lipka J, Gubanska I, Lewandowska A, Terebieniec A, Przybytek A, Cieśliński.Antibacterial polyurethanes modified with cinnamaldehyde, as potential materials for fabrication of wound dressings. Polym Bull. 2019;75:2725-2742. doi: 10.1007/s00289-018-2512-x 121. Shen Y, Kahramanoğlu I, Chen C, Chen J, Okatan V, Wan C. Application of cinnamaldehyde for postharvest storage of fresh horticultural products. Horticult Int J. 2021;5(3):103-105. Doi:10.15406/hij.2021.05.00212 122. Duan X, OuYang Q, Tao N. Effect of applying cinnamaldehyde incorporated in wax on green mould decay in citrus fruits. J Sci Food Agric. 2018;98(2):527-533. doi: 10.1002/jsfa.8490. 123. Xu Y, Yin Y, Li T, Zhao H, Li X, Li J, et al. Effects of lysozyme combined with cinnamaldehyde on storage quality of olive flounder (Paralichthys olivaceus) fillet. J Food Scie. 2020;85(4):1037-1044. doi: 10.1111/1750-3841.14980 124. Xue YF, Zhang M, Qi ZQ, Li YQ, Shi Z, Chen J. Cinnamaldehyde promotes root branching by regulating endogenous hydrogen sulfide. J Sci Food Agric. 2016 Feb;96(3):909-14. doi: 10.1002/jsfa.7164. Epub 2015 Mar 27. PMID: 25752512. 125. Lu L, Shu C, Chen L, Yang Y, Ma S, Zhu K, et al. Insecticidal activity and mechanism of cinnamaldehyde in C. elegans. Fitoterapia. 2020 Oct;146:104687. doi: 10.1016/j.fitote.2020.104687. Epub 2020 Jul 15. PMID: 32681860. 126. Muñoz M, Torres-Pagán, Peiro R, Guijarro R, Sánchez-Moreiras AM, Verdeguer M. phytotoxic effects of three natural compounds: Pelargonic acid, carvacrol and cinnamic aldehyde, against problematic weeds in Mediterranean crops. Agronomy. 2020;10(6):791. doi:10.3390/agronomy10060791 127. Kowalska J, Tyburski J, Matysiak K, Jakubowska M, Łukaszyk J, Krzymińska J. Cinnamon as a Useful Preventive Substance for the Care of Human and Plant Health. Molecules. 2021 Aug 31;26(17):5299. doi: 10.3390/molecules26175299. PMID: 34500731; PMCID: PMC8433798. 128. Sun Q, Li J, Sun Y, Chen Q, Zhang L, Le T. The antifungal effects of cinnamaldehyde against Aspergillus niger and its application in bread preservation. Food Chem. 2020;317:126405. doi: 10.1016/j.foodchem.2020.126405 129. Olszewska MA, Gędas A, Simões M. The Effects of Eugenol, Trans-Cinnamaldehyde, Citronellol, and Terpineol on Escherichia coli Biofilm Control as Assessed by Culture-Dependent and -Independent Methods. Molecules. 2020 Jun 6;25(11):2641. doi: 10.3390/molecules25112641. 130. Fang S, Feng X, Lei Y, Chen Z, Yan L. Improvement of wood decay resistance with cinnamaldehyde chitosan emulsion. Ind Crops Prod. 2021;160:113118. doi: 10.1016/j.indcrop.2020.113118 | ||
آمار تعداد مشاهده مقاله: 33,696 تعداد دریافت فایل اصل مقاله: 1,373 |