- Torres A, Serra-Batlles J, Ferrer A, Jiménez P, Celis R, Cobo E, Rodriguez-Roisin R. Severe community-acquired pneumonia. Epidemiology and prognostic factors. Am Rev Respir Dis. 1991;144(2):312-8. doi: 10.1164/ajrccm/144.2.312. PubMed PMID: 1859053.
- Marrie TJ. Community-acquired pneumonia. Clin Infect Dis. 1994;18(4):501-13. doi: 10.1093/clinids/18.4.501. PubMed PMID: 8038304.
- Gonçalves-Pereira J, Conceição C, Póvoa P. Community-acquired pneumonia: identification and evaluation of nonresponders. Ther Adv Infect Dis. 2013;1(1):5-17. doi: 10.1177/2049936112469017. PubMed PMID: 25165541. PubMed PMCID: PMC4040717.
- Pneumonia [Internet]. 2020 Mar [cited 2022 Jun 8]. Available from: https://www.cdc.gov/pneumonia/.
- Mahomed N, Fancourt N, De Campo J, De Campo M, Akano A, Cherian T, et al. Preliminary report from the World Health Organisation Chest Radiography in Epidemiological Studies project. Pediatr Radiol. 2017;47(11):1399-404. doi: 10.1007/s00247-017-3834-9. PubMed PMID: 29043423. PubMed PMCID: PMC5608771.
- Franquet T. Imaging of pneumonia: trends and algorithms. Eur Respir J. 2001;18(1):196-208. doi: 10.1183/09031936.01.00213501. PubMed PMID: 11510793.
- File TM. Community-acquired pneumonia. 2003;362(9400):1991-2001. doi: 0.1016/S0140-6736(03)15021-0. PubMed PMID: 14683661. PubMed PMCID: PMC7119317.
- Oates A, Halliday K, Offiah AC, Landes C, Stoodley N, Jeanes A, et al. Shortage of paediatric radiologists acting as an expert witness: position statement from the British Society of Paediatric Radiology (BSPR) National Working Group on Imaging in Suspected Physical Abuse (SPA). Clin Radiol. 2019;74(7):496-502. doi: 10.1016/j.crad.2019.04.016. PubMed PMID: 31126587.
- Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88. doi: 10.1016/j.media.2017.07.005. PubMed PMID: 28778026.
- Yang W, Chen Y, Liu Y, Zhong L, Qin G, Lu Z, Feng Q, Chen W. Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain. Med Image Anal. 2017;35:421-33. doi: 10.1016/j.media.2016.08.004. PubMed PMID: 27589577.
- Nandi R, Mulimani M. Detection of COVID-19 from X-rays using hybrid deep learning models. Res Biomed Eng. 2021;37(4):687-95. doi: 10.1007/s42600-021-00181-0.
- Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018;15(11):e1002686. doi: 10.1371/journal.pmed.1002686. PubMed PMID: 30457988. PubMed PMCID: PMC6245676.
- Jadhav A, Wong KCL, Wu JT, Moradi M, Syeda-Mahmood T. Combining Deep Learning and Knowledge-driven Reasoning for Chest X-Ray Findings Detection. AMIA Annu Symp Proc. 2021;2020:593-601. PubMed PMID: 33936433. PubMed PMCID: PMC8075485.
- Elshennawy NM, Ibrahim DM. Deep-Pneumonia Framework Using Deep Learning Models Based on Chest X-Ray Images. Diagnostics (Basel). 2020;10(9):649. doi: 10.3390/diagnostics10090649. PubMed PMID: 32872384. PubMed PMCID: PMC7554804.
- Kingma DP, Ba J. Adam: A method for stochastic optimization. ArXiv Preprint. 2014;12(8):756. doi: 10.48550/ARXIV.1412.6980.
- Abiyev RH, Ma’aitah MKS. Deep Convolutional Neural Networks for Chest Diseases Detection. J Healthc Eng. 2018;2018:4168538. doi: 10.1155/2018/4168538. PubMed PMID: 30154989. PubMed PMCID: PMC6093039.
- Varshni D, Thakral K, Agarwal L, Nijhawan R, Mittal A. Pneumonia detection using CNN based feature extraction. In 2019 IEEE international conference on electrical, computer and communication technologies (ICECCT); Coimbatore, India: IEEE; 2019.
- Malygina T, Ericheva E, Drokin I. GANs’ N Lungs: improving pneumonia prediction. ArXiv Preprint. doi: arXiv:1908.00433.
- Rahmat T, Ismail A, Aliman S. Chest X-ray image classification using faster R-CNN. Malaysian Journal of Computing (MJoC). 2019;4(1):225-36.
- Chouhan V, Singh SK, Khamparia A, Gupta D, Tiwari P, Moreira C, Damaševičius R, De Albuquerque VH. A novel transfer learning based approach for pneumonia detection in chest X-ray images. Applied Sciences. 2020;10(2):559. doi: 10.3390/app10020559.
- Cohen JP, Bertin P, Frappier V. Chester: A web delivered locally computed chest x-ray disease prediction system. Arxiv Preprint. doi: arXiv:1901.11210.
- Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018;172(5):1122-31. doi: 10.1016/j.cell.2018.02.010. PubMed PMID: 29474911.
- Yao L, Prosky J, Poblenz E, Covington B, Lyman K. Weakly supervised medical diagnosis and localization from multiple resolutions. ArXiv Preprint. doi: arXiv:1803.07703.
- Acharya AK, Satapathy R. A deep learning based approach towards the automatic diagnosis of pneumonia from chest radio-graphs. Biomedical and Pharmacology Journal. 2020;13(1):449-55. doi: 10.13005/bpj/1905.
- Tang YX, Tang YB, Peng Y, Yan K, Bagheri M, Redd BA, et al. Automated abnormality classification of chest radiographs using deep convolutional neural networks. NPJ Digital Medicine. 2020;3(1):1-8. doi: 10.1038/s41746-020-0273-z.
- Xu S, Wu H, Bie R. CXNet-m1: anomaly detection on chest X-rays with image-based deep learning. IEEE Access. 2018;7:4466-77. doi: 10.1109/ACCESS.2018.2885997.
- Baltruschat IM, Nickisch H, Grass M, Knopp T, Saalbach A. Comparison of deep learning approaches for multi-label chest X-ray classification. Sci Rep. 2019;9(1):1.
- Togaçar M, Ergen B, Cömert Z, Özyurt F. A deep feature learning model for pneumonia detection applying a combination of mRMR feature selection and machine learning models. 2020;41(4):212-22. doi: 10.1016/j.irbm.2019.10.006.
- Wong KC, Moradi M, Wu J, Syeda-Mahmood T. Identifying disease-free chest x-ray images with deep transfer learning. Medical Imaging, Computer-Aided Diagnosis; San Diego, California, United States: SPIE; 2019. doi: 10.1117/12.2513164.
- Li Z, Wang C, Han M, Xue Y, Wei W, Li LJ, Fei-Fei L. Thoracic disease identification and localization with limited supervision. In IEEE/CVF Conference on Computer Vision and Pattern Recognition; USA: IEEE; 2018. p. 8290-9.
- Zhou B, Li Y, Wang J. A weakly supervised adaptive densenet for classifying thoracic diseases and identifying abnormalities. Arxiv Preprint. doi: arXiv:1807.01257.
- Guan Q, Huang Y, Zhong Z, Zheng Z, Zheng L, Yang Y. Diagnose like a radiologist: Attention guided convolutional neural network for thorax disease classification. Arxiv Preprint. 2018. doi: arXiv:1801.09927.
- Irfan A, Adivishnu AL, Sze-To A, Dehkharghanian T, Rahnamayan S, Tizhoosh HR. Classifying Pneumonia among Chest X-Rays Using Transfer Learning. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:2186-9. doi: 10.1109/EMBC44109.2020.9175594. PubMed PMID: 33018440.
- Jain R, Nagrath P, Kataria G, Kaushik VS, Hemanth DJ. Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning. 2020;165:108046. doi: 10.1016/j.measurement.2020.108046.
- Ayan E, Ünver HM. Diagnosis of pneumonia from chest X-ray images using deep learning. In 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT); Istanbul, Turkey: IEEE; 2019. p. 1-5.
|