- Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv Healthc Mater. 2017;6(23):1700306. doi: 10.1002/adhm.201700306. PubMed PMID: 28990364.
- Jabbar KQ, Barzinjy AA, Hamad SM. Iron oxide nanoparticles: Preparation methods, functions, adsorption and coagulation/flocculation in wastewater treatment. Environmental Nanotechnology, Monitoring & Management. 2022;17:100661. doi: 10.1016/j.enmm.2022.100661.
- Hooshmand S, Hayat SMG, Ghorbani A, Khatami M, Pakravanan K, Darroudi M. Preparation and Applications of Superparamagnetic Iron Oxide Nanoparticles in Novel Drug Delivery Systems: An Overview. Curr Med Chem. 2021;28(4):777-99. doi: 10.2174/0929867327666200123152006. PubMed PMID: 31971104.
- Onoue S, Takahashi H, Kawabata Y, Seto Y, Hatanaka J, Timmermann B, et al. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J Pharm Sci. 2010;99(4):1871-81. doi: 10.1002/jps.21964. PubMed PMID: 19827133.
- Strijkers GJ, Mulder WJ, Van Tilborg GA, Nicolay K. MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem. 2007;7(3):291-305. doi: 10.2174/187152007780618135. PubMed PMID: 17504156.
- Villaraza AJ, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev. 2010;110(5):2921-59. doi: 10.1021/cr900232t. PubMed PMID: 20067234. PubMed PMCID: PMC2868950.
- Tao C, Zheng Q, An L, He M, Lin J, Tian Q, et al. T1-Weight Magnetic Resonance Imaging Performances of Iron Oxide Nanoparticles Modified with a Natural Protein Macromolecule and an Artificial Macromolecule. Nanomaterials. 2019;9(2):170. doi: 10.3390/nano9020170. PubMed PMID: 30704072. PubMed PMCID: PMC6409807.
- Bellin MF, Van Der Molen AJ. Extracellular gadolinium-based contrast media: an overview. Eur J Radiol. 2008;66(2):160-7. doi: 10.1016/j.ejrad.2008.01.023. PubMed PMID: 18358659.
- Blomqvist L, Nordberg GF, Nurchi VM, Aaseth JO. Gadolinium in Medical Imaging-Usefulness, Toxic Reactions and Possible Countermeasures-A Review. Biomolecules. 2022;12(6):742. doi: 10.3390/biom12060742. PubMed PMID: 35740867. PubMed PMCID: PMC9221011.
- Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update. AJNR Am J Neuroradiol. 2016;37(7):1192-8. doi: 10.3174/ajnr.A4615. PubMed PMID: 26659341. PubMed PMCID: PMC7960350.
- Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H. A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett. 2009;9(12):4434-40. doi: 10.1021/nl902715v. PubMed PMID: 19799448.
- Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc. 2011;133(32):12624-31. doi: 10.1021/ja203340u. PubMed PMID: 21744804.
- Shen Z, Wu A, Chen X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Molecular Pharmaceutics. 2017;14(5):1352-64.
- Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem Rev. 2015;115(19):10637-89. doi: 10.1021/acs.chemrev.5b00112. PubMed PMID: 26250431.
- Rui Y-P, Liang B, Hu F, Xu J, Peng Y-F, Yin P-H, et al. Ultra-large-scale production of ultrasmall superparamagnetic iron oxide nanoparticles for T 1-weighted MRI. RSC advances. 2016;6(27):22575-85. doi: 10.1039/c6ra00347h.
- Luo Y, Yang J, Yan Y, Li J, Shen M, Zhang G, Mignani S, Shi X. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas. Nanoscale. 2015;7(34):14538-46. doi: 10.1039/c5nr04003e. PubMed PMID: 26260703.
- Liu CL, Peng YK, Chou SW, Tseng WH, Tseng YJ, Chen HC, et al. One-step, room-temperature synthesis of glutathione-capped iron-oxide nanoparticles and their application in in vivo T1-weighted magnetic resonance imaging. Small. 2014;10(19):3962-9. doi: 10.1002/smll.201303868. PubMed PMID: 25044378.
- Huang J, Wang L, Zhong X, Li Y, Yang L, Mao H. Facile non-hydrothermal synthesis of oligosaccharides coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effect. J Mater Chem B. 2014;2(33):5344-51. doi: 10.1039/C4TB00811A. PubMed PMID: 25181490. PubMed PMCID: PMC4147377.
- Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9(9-10):1533-45. doi: 10.1002/smll.201201531. PubMed PMID: 23019129.
- Wang L, Huang J, Chen H, Wu H, Xu Y, Li Y, Yi H, et al. Exerting Enhanced Permeability and Retention Effect Driven Delivery by Ultrafine Iron Oxide Nanoparticles with T1-T2 Switchable Magnetic Resonance Imaging Contrast. ACS Nano. 2017;11(5):4582-92. doi: 10.1021/acsnano.7b00038. PubMed PMID: 28426929. PubMed PMCID: PMC5701890.
- Xiao L, Li J, Brougham DF, Fox EK, Feliu N, Bushmelev A, et al. Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano. 2011;5(8):6315-24. doi: 10.1021/nn201348s. PubMed PMID: 21790153.
- Wang G, Zhang X, Skallberg A, Liu Y, Hu Z, Mei X, Uvdal K. One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging. Nanoscale. 2014;6(5):2953-63. doi: 10.1039/c3nr05550g. PubMed PMID: 24480995.
- Hu Y , Mignani S , Majoral JP , Shen M , Shi X . Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev. 2018;47(5):1874-900. doi: 10.1039/c7cs00657h. PubMed PMID: 29376542.
- Cheng KK, Chan PS, Fan S, Kwan SM, Yeung KL, et al. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials. 2015;44:155-72. doi: 10.1016/j.biomaterials.2014.12.005. PubMed PMID: 25617135.
- Lu M, Ozcelik A, Grigsby CL, Zhao Y, Guo F, Leong KW, Huang TJ. Microfluidic Hydrodynamic Focusing for Synthesis of Nanomaterials. Nano Today. 2016;11(6):778-92. doi: 10.1016/j.nantod.2016.10.006. PubMed PMID: 30337950. PubMed PMCID: PMC6191180.
- Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, et al. Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for T1-Weighted Magnetic Resonance Imaging and Chemotherapy. ACS Nano. 2017;11(11):10992-1004. doi: 10.1021/acsnano.7b04924. PubMed PMID: 29039917.
- Nejadshafiee V, Naeimi H, Goliaei B, Bigdeli B, Sadighi A, Dehghani S, et al. Magnetic bio-metal-organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. Mater Sci Eng C Mater Biol Appl. 2019;99:805-15. doi: 10.1016/j.msec.2019.02.017. PubMed PMID: 30889755.
- Demirer GS , Okur AC , Kizilel S . Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J Mater Chem B. 2015;3(40):7831-49. doi: 10.1039/c5tb00931f. PubMed PMID: 32262898.
- Shen Z, Song J, Zhou Z, Yung BC, Aronova MA, Li Y, et al. Dotted Core-Shell Nanoparticles for T1 -Weighted MRI of Tumors. Adv Mater. 2018;30(33):1803163. doi: 10.1002/adma.201803163. PubMed PMID: 29972604. PubMed PMCID: PMC6320323.
- Park EA, Lee W, So YH, Lee YS, Jeon BS, Choi KS, et al. Extremely Small Pseudoparamagnetic Iron Oxide Nanoparticle as a Novel Blood Pool T1 Magnetic Resonance Contrast Agent for 3 T Whole-Heart Coronary Angiography in Canines: Comparison With Gadoterate Meglumine. Invest Radiol. 2017;52(2):128-33. doi: 10.1097/RLI.0000000000000321. PubMed PMID: 27977466.
- Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today. 2012;17(1-2):71-80. doi: 10.1016/j.drudis.2011.09.009. PubMed PMID: 21959306. PubMed PMCID: PMC3259195.
- Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351(1):19-29. doi: 10.1016/j.jcis.2010.05.022. PubMed PMID: 20627257.
- Kumar B, Priyadarshi R, Deeba F, Kulshreshtha A, Kumar A, et al. Redox responsive xylan-SS-curcumin prodrug nanoparticles for dual drug delivery in cancer therapy. Mater Sci Eng C Mater Biol Appl. 2020;107:110356. doi: 10.1016/j.msec.2019.110356. PubMed PMID: 31761247.
- Li F, Li X, Li B. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin. Journal of Magnetism and Magnetic Materials. 2011;323(22):2770-5. doi: 10.1016/j.jmmm.2011.05.045.
- Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. 2011;32(7):1890-905. doi: 10.1016/j.biomaterials.2010.11.028. PubMed PMID: 21167595. PubMed PMCID: PMC3021632.
- Wang N, Guan Y, Yang L, Jia L, Wei X, Liu H, Guo C. Magnetic nanoparticles (MNPs) covalently coated by PEO-PPO-PEO block copolymer for drug delivery. J Colloid Interface Sci. 2013;395:50-7. doi: 10.1016/j.jcis.2012.11.062. PubMed PMID: 23305884.
- Cheng KK, Wang YX, Chow AH, Baum L. Amyloid plaques binding curcumin conjugated magnetic nanoparticles for diagnosis in alzheimer’s disease tg2576 mice. Alzheimer’s & Dementia. 2014;10(45):P152-3. doi: 10.1016/j.jalz.2014.04.122.
- Mancarella S, Greco V, Baldassarre F, Vergara D, Maffia M, Leporatti S. Polymer-Coated Magnetic Nanoparticles for Curcumin Delivery to Cancer Cells. Macromol Biosci. 2015;15(10):1365-74. doi: 10.1002/mabi.201500142. PubMed PMID: 26085082.
|