تعداد نشریات | 20 |
تعداد شمارهها | 1,121 |
تعداد مقالات | 10,273 |
تعداد مشاهده مقاله | 42,905,658 |
تعداد دریافت فایل اصل مقاله | 9,392,105 |
The exopolysaccharide produced by Pantoea sp. BCCS 001 GH provides hepatoprotection in a rat model of bile duct obstruction | ||
Trends in Pharmaceutical Sciences | ||
مقاله 1، دوره 8، شماره 4، اسفند 2022، صفحه 211-222 اصل مقاله (688.88 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30476/tips.2022.95246.1143 | ||
نویسندگان | ||
Seyyed Vahid Niknezhad1؛ Younes Ghasemi2، 3؛ Ali Khalili Gashtroudkhani4؛ Hamidreza Mohammadi5؛ Reza Heidari* 2 | ||
1Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. | ||
2Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. | ||
3Department of Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. | ||
4Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran. | ||
5Department of Pharmacology and Toxicology, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran. | ||
چکیده | ||
Liver injury is a severe clinical complication associated with various diseases or xenobiotics exposure. Hence, finding safe and clinically applicable hepatoprotective agents have great value. Several naturally-derived chemicals have gotten attention for their biological functions. Polysaccharides are bioactive and safe chemicals produced by a variety of microorganisms. Several exciting features, including radical scavenging and antioxidative properties, have been attributed to polysaccharides. Recently we found that the exopolysaccharide derived from Pentoea sp. BCCS 001 GH (Pentoan exopolysaccharide; PEPS) revealed significant antioxidant and radical scavenging properties in an in vitro model. Hence, the current study was designed to evaluate the in vivo hepatoprotective effects of PEPS. Bile duct ligated (BDL) rats received PEPS (0.05 and 0.1% w: v in drinking water), and serum biomarkers of liver injury, liver tissue histopathological alterations, and hepatic markers of oxidative stress were monitored. Severely elevated serum biomarkers of liver injury and histopathological changes, including inflammatory cell infiltration, necrosis, bile duct proliferation, and tissue fibrosis, were evident in BDL animals. Moreover, a significant amount of reactive oxygen species, increased level of lipid peroxidation, and defects in tissue antioxidant capacity were apparent in BDL rats. It was found that PEPS significantly improved liver function, blunted hepatic pathological changes, and counteracted oxidative stress in the liver tissue. The radical scavenging and antioxidant properties of PEPS seem to play a fundamental role in its hepatoprotective properties. Please cite this article as: Seyyed Vahid Niknezhad, Younes Ghasemi, Ali Khalili Gashtroudkhani, Hamidreza Mohammadi, Reza Heidari. The exopolysaccharide produced by Pantoea sp. BCCS 001 GH provides hepatoprotection in a rat model of bile duct obstruction. Trends in Pharmaceutical Sciences. 2022;8(4):211-222. doi: 10.30476/tips.2022.95246.1143 | ||
کلیدواژهها | ||
Bile acid؛ Cholestasis؛ Fibrosis؛ Hepatoprotection؛ Oxidative stress | ||
مراجع | ||
1. Heidari R, Niknahad H, Sadeghi A, Mohammadi H, Ghanbarinejad V, Ommati MM, et al. Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury. Biomed Pharmacother. 2018 Jul;103:75-86. doi: 10.1016/j.biopha.2018.04.010. Epub 2018 Apr 7. PMID: 29635131. 2. Woolbright BL, Jaeschke H. Novel insight into mechanisms of cholestatic liver injury. World J Gastroenterol. 2012 Sep 28;18(36):4985-93. doi: 10.3748/wjg.v18.i36.4985. 3. Heidari R, Mohammadi H, Ghanbarinejad V, Ahmadi A, Ommati MM, Niknahad H, et al. Proline supplementation mitigates the early stage of liver injury in bile duct ligated rats. J Basic Clin Physiol Pharmacol. 2018 Dec 19;30(1):91-101. doi: 10.1515/jbcpp-2017-0221. PMID: 30205645. 4. Heidari R, Moezi L, Asadi B, Ommati MM, Azarpira N. Hepatoprotective effect of boldine in a bile duct ligated rat model of cholestasis/cirrhosis. PharmaNutrition. 2017;5;109-17. doi: 10.1016/j.phanu.2017.07.001. 5. Kardosová A, Machová E. Antioxidant activity of medicinal plant polysaccharides. Fitoterapia. 2006 Jul;77(5):367-73. doi: 10.1016/j.fitote.2006.05.001. 6. Wang C, Fan Q, Zhang X, Lu X, Xu Y, Zhu W, et al. Isolation, Characterization, and Pharmaceutical Applications of an Exopolysaccharide from Aerococcus Uriaeequi. Mar Drugs. 2018 Sep 16;16(9):337. doi: 10.3390/md16090337. 7. Tabernero A, Cardea S. Microbial Exopolysaccharides as Drug Carriers. Polymers (Basel). 2020 Sep 19;12(9):2142. doi: 10.3390/polym12092142. 8. Wang H, Liu YM, Qi ZM, Wang SY, Liu SX, Li X, et al. An overview on natural polysaccharides with antioxidant properties. Curr Med Chem. 2013;20(23):2899-913. doi: 10.2174/0929867311320230006. 9. Xiao H, Cai X, Fan Y, Luo A. Antioxidant Activity of Water-soluble Polysaccharides from Brasenia schreberi. Pharmacogn Mag. 2016 Jul-Sep;12(47):193-7. doi: 10.4103/0973-1296.186343. 10. Shobharani P, Nanishankar VH, Halami PM, Sachindra NM. Antioxidant and anticoagulant activity of polyphenol and polysaccharides from fermented Sargassum sp. Int J Biol Macromol. 2014 Apr;65:542-8. doi: 10.1016/j.ijbiomac.2014.02.005. 11. Lin SM, Baek CY, Jung JH, Kim WS, Song HY, Lee JH, et al. Antioxidant Activities of an Exopolysaccharide (DeinoPol) Produced by the Extreme Radiation-Resistant Bacterium Deinococcus radiodurans. Sci Rep. 2020 Jan 9;10(1):55. doi: 10.1038/s41598-019-56141-3. 12. Heidari R, Mandegani L, Ghanbarinejad V, Siavashpour A, Ommati MM, Azarpira N, et al. Mitochondrial dysfunction as a mechanism involved in the pathogenesis of cirrhosis-associated cholemic nephropathy. Biomed Pharmacother. 2019;109;271-80. doi: 10.1016/j.biopha.2018.10.104. 13. Ahmadi A, Niknahad H, Li H, Mobasheri A, Manthari RK, Azarpira N, et al. The inhibition of NFкB signaling and inflammatory response as a strategy for blunting bile acid-induced hepatic and renal toxicity. Toxicol Lett. 2021 Oct 1;349:12-29. doi: 10.1016/j.toxlet.2021.05.012. 14. Ommati MM, Farshad O, Mousavi K, Taghavi R, Farajvajari S, Azarpira N, et al. Agmatine alleviates hepatic and renal injury in a rat model of obstructive jaundice. PharmaNutrition. 2020;13;100212. doi: 10.1016/j.phanu.2020.100212. 15. Ghanbarinejad V, Jamshidzadeh A, Khalvati B, Farshad O, Li H, Shi X, et al. Apoptosis-inducing factor plays a role in the pathogenesis of hepatic and renal injury during cholestasis. Naunyn Schmiedebergs Arch Pharmacol. 2021 Jun;394(6):1191-1203. doi: 10.1007/s00210-020-02041-7. 16. Mousavi K, Niknahad H, Li H, Jia Z, Manthari RK, Zhao Y, et al. The activation of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling blunts cholestasis-induced liver and kidney injury. Toxicol Res (Camb). 2021 Aug 4;10(4):911-927. doi: 10.1093/toxres/tfab073. 17. Ommati MM, Farshad O, Niknahad H, Mousavi K, Moein M, Azarpira N, et al. Oral administration of thiol-reducing agents mitigates gut barrier disintegrity and bacterial lipopolysaccharide translocation in a rat model of biliary obstruction. Curr Res Pharmacol Drug Discov. 2020 Jun 16;1:10-18. doi: 10.1016/j.crphar.2020.06.001. 18. Siavashpour A, Khalvati B, Azarpira N, Mohammadi H, Niknahad H, Heidari R. Poly (ADP-Ribose) polymerase-1 (PARP-1) overactivity plays a pathogenic role in bile acids-induced nephrotoxicity in cholestatic rats. Toxicol Lett. 2020 May 16;330:144-158. doi: 10.1016/j.toxlet.2020.05.012. 19. Ghanbarinejad V, Ommati MM, Jia Z, Farshad O, Jamshidzadeh A, Heidari R. Disturbed mitochondrial redox state and tissue energy charge in cholestasis. J Biochem Mol Toxicol. 2021 Sep;35(9):e22846. doi: 10.1002/jbt.22846. 20. Moezi L, Heidari R, Amirghofran Z, Nekooeian AA, Monabati A, Dehpour AR. Enhanced anti-ulcer effect of pioglitazone on gastric ulcers in cirrhotic rats: the role of nitric oxide and IL-1β. Pharmacol Rep. 2013;65(1):134-43. doi: 10.1016/s1734-1140(13)70971-x. 21. Heidari R, Babaei H, Eghbal MA. Cytoprotective Effects of Organosulfur Compounds against Methimazole Induced Toxicity in Isolated Rat Hepatocytes. Adv Pharm Bull. 2013;3(1):135-42. doi: 10.5681/apb.2013.023. 22. Ommati MM, Heidari R, Manthari RK, Tikka Chiranjeevi S, Niu R, Sun Z, et al. Paternal exposure to arsenic resulted in oxidative stress, autophagy, and mitochondrial impairments in the HPG axis of pubertal male offspring. Chemosphere. 2019 Dec;236:124325. doi: 10.1016/j.chemosphere.2019.07.056. 23. Ommati MM, Farshad O, Mousavi K, Khalili M, Jamshidzadeh A, Heidari R. Chlorogenic acid supplementation improves skeletal muscle mitochondrial function in a rat model of resistance training. Biologia. 2020;75;1221-30. doi: 10.2478/s11756-020-00429-7. 24. Heidari R, Niknahad H, Jamshidzadeh A, Azarpira N, Bazyari M, Najibi A. Carbonyl traps as potential protective agents against methimazole-induced liver injury. J Biochem Mol Toxicol. 2015 Apr;29(4):173-81. doi: 10.1002/jbt.21682. 25. Heidari R, Jamshidzadeh A, Niknahad H, Mardani E, Ommati MM, Azarpira N, et al. Effect of taurine on chronic and acute liver injury: Focus on blood and brain ammonia. Toxicol Rep. 2016 Apr 13;3:870-879. doi: 10.1016/j.toxrep.2016.04.002. 26. Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol. 2007 Oct;47(4):598-607. doi: 10.1016/j.jhep.2007.07.006. 27. Heidari R, Niknahad H. The Role and Study of Mitochondrial Impairment and Oxidative Stress in Cholestasis. Methods Mol Biol. 2019;1981:117-132. doi: 10.1007/978-1-4939-9420-5_8. PMID: 31016651. 28. Jamshidzadeh A, Heidari R, Latifpour Z, Ommati MM, Abdoli N, Mousavi S, et al. Carnosine ameliorates liver fibrosis and hyperammonemia in cirrhotic rats. Clin Res Hepatol Gastroenterol. 2017 Sep;41(4):424-434. doi: 10.1016/j.clinre.2016.12.010. 29. Ommati MM, Manthari RK, Tikka C, Niu R, Sun Z, Sabouri S, et al. Arsenic-induced autophagic alterations and mitochondrial impairments in HPG-S axis of mature male mice offspring (F1-generation): A persistent toxicity study. Toxicol Lett. 2020 Jun 15;326:83-98. doi: 10.1016/j.toxlet.2020.02.013. 30. Ommati MM, Jamshidzadeh A, Niknahad H, Mohammadi H, Sabouri S, Heidari R, et al. N-acetylcysteine treatment blunts liver failure-associated impairment of locomotor activity. PharmaNutrition. 2017;5;141-7. doi: 10.1016/j.phanu.2017.10.003. 31. Heidari R, Jamshidzadeh A, Niknahad H, Safari F, Azizi H, Abdoli N, et al. The hepatoprotection provided by taurine and glycine against antineoplastic drugs induced liver injury in an ex vivo model of normothermic recirculating isolated perfused rat liver. Trend Pharm Sci. 2016;2;59-76. 32. Niknezhad SV, Morowvat MH, Najafpour Darzi G, Iraji A, Ghasemi Y. Exopolysaccharide from Pantoea sp. BCCS 001 GH isolated from nectarine fruit: production in submerged culture and preliminary physicochemical characterizations. Food Sci Biotechnol. 2018 Jun 12;27(6):1735-1746. doi: 10.1007/s10068-018-0409-y. 33. Niknezhad SV, Najafpour-Darzi G, Morowvat MH, Ghasemi Y. Eexopolysaccharide production of Pantoea sp. BCCS 001 GH: Physical characterizations, emulsification, and antioxidant activities. Int J Biol Macromol. 2018 Oct 15;118(Pt A):1103-1111. doi: 10.1016/j.ijbiomac.2018.06.157. 34. Gossard AA, Talwalkar JA. Cholestatic liver disease. Med Clin North Am. 2014 Jan;98(1):73-85. doi: 10.1016/j.mcna.2013.09.002. 35. Ara C, Kirimlioglu H, Karabulut AB, Coban S, Ay S, Harputluoglu M, et al. Protective effect of resveratrol against oxidative stress in cholestasis. J Surg Res. 2005 Aug;127(2):112-7. doi: 10.1016/j.jss.2005.01.024. PMID: 16083749. 36. Heidari R, Niknahad H, Jamshidzadeh A, Abdoli N. Factors affecting drug-induced liver injury: antithyroid drugs as instances. Clin Mol Hepatol. 2014 Sep;20(3):237-48. doi: 10.3350/cmh.2014.20.3.237. 37. Heidari R, Niknahad H, Jamshidzadeh A, Eghbal MA, Abdoli N. An overview on the proposed mechanisms of antithyroid drugs-induced liver injury. Adv Pharm Bull. 2015 Mar;5(1):1-11. doi: 10.5681/apb.2015.001. 38. Abdoli N, Heidari R, Azarmi Y, Eghbal MA. Mechanisms of the statins cytotoxicity in freshly isolated rat hepatocytes. J Biochem Mol Toxicol. 2013 Jun;27(6):287-94. doi: 10.1002/jbt.21485. Epub 2013 Apr 23. PMID: 23761184. 39. Niknahad H, Jamshidzadeh A, Heidari R, Zarei M, Ommati MM. Ammonia-induced mitochondrial dysfunction and energy metabolism disturbances in isolated brain and liver mitochondria, and the effect of taurine administration: relevance to hepatic encephalopathy treatment. Clin Exp Hepatol. 2017 Sep;3(3):141-151. doi: 10.5114/ceh.2017.68833. 40. Ommati MM, Heidari R. Chapter 38 - Betaine, heavy metal protection, oxidative stress, and the liver. In: Patel VB, Preedy VR, editors. Toxicology: Academic Press; 2021. p. 387-95. 41. Heidari R, Arabnezhad MR, Ommati MM, Azarpira N, Ghodsimanesh E, Niknahad H. Boldine supplementation regulates mitochondrial function and oxidative stress in a rat model of hepatotoxicity. Pharm Sci. 2019;25;1-10. doi: 10.15171/PS.2019.1. 42. Ommati MM, Attari H, Siavashpour A, Shafaghat M, Azarpira N, Ghaffari H, et al. Mitigation of cholestasis-associated hepatic and renal injury by edaravone treatment: Evaluation of its effects on oxidative stress and mitochondrial function. Liver Res. 2021;5;181-93. doi: 10.1016/j.livres.2020.10.003. 43. Farshad O, Ommati MM, Yüzügülen J, Jamshidzadeh A, Mousavi K, Ahmadi Z, et al. Carnosine mitigates biomarkers of oxidative stress, improves mitochondrial function, and alleviates histopathological alterations in the renal tissue of cholestatic rats. Pharm Sci. 2021;27;32-45. doi: 10.34172/PS.2020.60. 44. Ommati MM, Mohammadi H, Mousavi K, Azarpira N, Farshad O, Dehghani R, et al. Metformin alleviates cholestasis-associated nephropathy through regulating oxidative stress and mitochondrial function. Liver Res. 2021;5;171-80. doi: 10.1016/j.livres.2020.12.001. 45. Abdoli N, Sadeghian I, Mousavi K, Azarpira N, Ommati MM, Heidari R. Suppression of cirrhosis-related renal injury by N-acetyl cysteine. Curr Res Pharmacol Drug Discov. 2020 Oct 13;1:30-38. doi: 10.1016/j.crphar.2020.100006. 46. Ommati MM, Farshad O, Azarpira N, Ghazanfari E, Niknahad H, Heidari R. Silymarin mitigates bile duct obstruction-induced cholemic nephropathy. Naunyn Schmiedebergs Arch Pharmacol. 2021 Jun;394(6):1301-1314. doi: 10.1007/s00210-020-02040-8. 47. Heidari R, Abdoli N, Ommati MM, Jamshidzadeh A, Niknahad H. Mitochondrial impairment induced by chenodeoxycholic acid: The protective effect of taurine and carnosine supplementation. Trend Pharm Sci. 2018;4(4):235-40. 48. Martinez-Diez MC, Serrano MA, Monte MJ, Marin JJ. Comparison of the effects of bile acids on cell viability and DNA synthesis by rat hepatocytes in primary culture. Biochim Biophys Acta. 2000 Feb 21;1500(2):153-60. doi: 10.1016/s0925-4439(99)00099-x. PMID: 10657584. 49. Penman SL, Sharma P, Aerts H, Park BK, Weaver RJ, Chadwick AE. Differential toxic effects of bile acid mixtures in isolated mitochondria and physiologically relevant HepaRG cells. Toxicol In Vitro. 2019 Dec;61:104595. doi: 10.1016/j.tiv.2019.104595. 50. Copple BL, Jaeschke H, Klaassen CD. Oxidative stress and the pathogenesis of cholestasis. Semin Liver Dis. 2010;30;195-204. doi: 10.1055/s-0030-1253228. 51. Iruzubieta P, Goikoetxea-Usandizaga N, Barbier-Torres L, Serrano-Maciá M, Fernández-Ramos D, Fernández-Tussy P, et al. Boosting mitochondria activity by silencing MCJ overcomes cholestasis-induced liver injury. JHEP Rep. 2021 Mar 18;3(3):100276. doi: 10.1016/j.jhepr.2021.100276. 52. Heidari R, Ghanbarinejad V, Mohammadi H, Ahmadi A, Ommati MM, Abdoli N, et al. Mitochondria protection as a mechanism underlying the hepatoprotective effects of glycine in cholestatic mice. Biomed Pharmacother. 2018;97;1086-95. doi: 10.1016/j.biopha.2017.10.166. 53. Ommati MM, Farshad O, Azarpira N, Shafaghat M, Niknahad H, Heidari R. Betaine alleviates cholestasis-associated renal injury by mitigating oxidative stress and enhancing mitochondrial function. Biologia. 2021;76;351-65. doi: 10.2478/s11756-020-00576-x. 54. Ahmadi N, Ghanbarinejad V, Ommati MM, Jamshidzadeh A, Heidari R. Taurine prevents mitochondrial membrane permeabilization and swelling upon interaction with manganese: Implication in the treatment of cirrhosis-associated central nervous system complications. J Biochem Mol Toxicol. 2018 Nov;32(11):e22216. doi: 10.1002/jbt.22216. Epub 2018 Aug 28. PMID: 30152904. 55. Heidari R, Jamshidzadeh A, Ommati MM, Rashidi E, Khodaei F, Sadeghi A, et al. Ammonia-induced mitochondrial impairment is intensified by manganese co-exposure: relevance to the management of subclinical hepatic encephalopathy and cirrhosis-associated brain injury. Clin Exp Hepatol. 2019 May;5(2):109-117. doi: 10.5114/ceh.2019.85071. 56. Niknahad AM, Ommati MM, Farshad O, Moezi L, Heidari R. Manganese-induced nephrotoxicity is mediated through oxidative stress and mitochondrial impairment. J Renal Hepatic Disord. 2020;4;1-10. doi: 10.15586/jrenhep.2020.66. 57. Jamshidzadeh A, Heidari R, Razmjou M, Karimi F, Moein MR, Farshad O, et al. An in vivo and in vitro investigation on hepatoprotective effects of Pimpinella anisum seed essential oil and extracts against carbon tetrachloride-induced toxicity. Iran J Basic Med Sci. 2015 Feb;18(2):205-11. 58. Niknahad H, Heidari R, Mokhtebaz T, Mansouri S, Dehshahri S, Abdoli N, Najibi A. Evaluating the effects of different fractions obtained from Gundelia tournefortii extract against carbon tetrachloride-induced liver injury in rats. Trend Pharm Sci. 2016;2;25-34. doi: 10.1111/tips.v2i1.58. 59. Jiménez-Arellanes MA, Gutiérrez-Rebolledo GA, Meckes-Fischer M, León-Díaz R. Medical plant extracts and natural compounds with a hepatoprotective effect against damage caused by antitubercular drugs: A review. Asian Pac J Trop Med. 2016 Dec;9(12):1141-1149. doi: 10.1016/j.apjtm.2016.10.010. 60. Madrigal-Santillán E, Madrigal-Bujaidar E, Álvarez-González I, Sumaya-Martínez MT, Gutiérrez-Salinas J, Bautista M, et al. Review of natural products with hepatoprotective effects. World J Gastroenterol. 2014 Oct 28;20(40):14787-804. doi: 10.3748/wjg.v20.i40.14787. 61. Ma Z, Cui F, Gao X, Zhang J, Zheng L, Jia L. Purification, characterization, antioxidant activity and anti-aging of exopolysaccharides by Flammulina velutipes SF-06. Antonie Van Leeuwenhoek. 2015 Jan;107(1):73-82. doi: 10.1007/s10482-014-0305-2. 62. Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, et al. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol. 2013 Mar;54:270-5. doi: 10.1016/j.ijbiomac.2012.12.037. 63. Rajoka MSR, Mehwish HM, Hayat HF, Hussain N, Sarwar S, Aslam H, et al. Characterization, the Antioxidant and Antimicrobial Activity of Exopolysaccharide Isolated from Poultry Origin Lactobacilli. Probiotics Antimicrob Proteins. 2019 Dec;11(4):1132-1142. doi: 10.1007/s12602-018-9494-8. 64. Wang Y, Zhao Y, Andrae-Marobela K, Okatch H, Xiao J. Tea polysaccharides as food antioxidants: an old woman's tale? Food Chem. 2013 Jun 1;138(2-3):1923-7. doi: 10.1016/j.foodchem.2012.09.145. 65. Giavasis I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr Opin Biotechnol. 2014 Apr;26:162-73. doi: 10.1016/j.copbio.2014.01.010. 66. Wang J, Hu S, Nie S, Yu Q, Xie M. Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides. Oxid Med Cell Longev. 2016;2016:5692852. doi: 10.1155/2016/5692852. 67. Wu M, Luo X, Xu X, Wei W, Yu M, Jiang N, et al. Antioxidant and immunomodulatory activities of a polysaccharide from Flammulina velutipes. J Tradit Chin Med. 2014 Dec;34(6):733-40. doi: 10.1016/s0254-6272(15)30089-3. PMID: 25618979. 68. Liedtke C, Nevzorova YA, Luedde T, Zimmermann H, Kroy D, Strnad P, et al. Liver Fibrosis-From Mechanisms of Injury to Modulation of Disease. Front Med (Lausanne). 2022 Jan 11;8:814496. doi: 10.3389/fmed.2021.814496. PMID: 35087852; PMCID: PMC8787129. 69. Bao YL, Wang L, Pan HT, Zhang TR, Chen YH, Xu SJ, et al. Animal and Organoid Models of Liver Fibrosis. Front Physiol. 2021 May 26;12:666138. doi: 10.3389/fphys.2021.666138. PMID: 34122138; PMCID: PMC8187919. 70. Zepeda-Morales AS, Del Toro-Arreola S, García-Benavides L, Bastidas-Ramírez BE, Fafutis-Morris M, Pereira-Suárez AL, et al. Liver fibrosis in bile duct-ligated rats correlates with increased hepatic IL-17 and TGF-β2 expression. Ann Hepatol. 2016 May-Jun;15(3):418-26. doi: 10.5604/16652681.1198820. 71. Ramos-Tovar E, Muriel P. Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver. Antioxidants (Basel). 2020 Dec 15;9(12):1279. doi: 10.3390/antiox9121279. PMID: 33333846; PMCID: PMC7765317. 72. Lin L, Zhou F, Shen S, Zhang T. Fighting Liver Fibrosis with Naturally Occurring Antioxidants. Planta Med. 2018 Dec;84(18):1318-1333. doi: 10.1055/a-0757-0008. Epub 2018 Oct 12. PMID: 30312974. 73. Sun L, Yang Y, Lei P, Li S, Xu H, Wang R, et al. Structure characterization, antioxidant and emulsifying capacities of exopolysaccharide derived from Pantoea alhagi NX-11. Carbohydr Polym. 2021 Jun 1;261:117872. doi: 10.1016/j.carbpol.2021.117872. Epub 2021 Feb 27. PMID: 33766359. 74. Poli A, Di Donato P, Abbamondi GR, Nicolaus B. Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea. 2011;2011:693253. doi: 10.1155/2011/693253. Epub 2011 Oct 10. PMID: 22007151; PMCID: PMC3191746. 75. Cruz D, Vasconcelos V, Pierre G, Michaud P, Delattre CJAS. Exopolysaccharides from cyanobacteria: Strategies for bioprocess development. Appl Sci. 2020;10;3763. doi: 10.3390/app10113763. | ||
آمار تعداد مشاهده مقاله: 33,282 تعداد دریافت فایل اصل مقاله: 837 |