Background: Coronary heart disease is the leading cause of death worldwide. Myocardial infarction (MI) is a fatal manifestation of coronary heart disease, which can present as sudden death. Although the molecular mechanisms of coronary heart disease are still unknown, global gene expression profiling is regarded as a useful approach for deciphering the pathophysiology of this disease and subsequent diseases. This study used a bioinformatics analysis approach to better understand the molecular mechanisms underlying coronary heart disease. Methods: This experimental study was conducted in the department of cardiology, Aja University of Medical Sciences (2021-2022), Tehran, Iran. To identify the key deregulated genes and pathways in coronary heart disease, an integrative approach was used by merging three gene expression datasets, including GSE19339, GSE66360, and GSE29111, into a single matrix. The t test was used for the statistical analysis, with a significance level of P<0.05. Results: The limma package in R was used to identify a total of 133 DEGs, consisting of 124 upregulated and nine downregulated genes. KDM5D, EIF1AY, and CCL20 are among the top upregulated genes. Moreover, the interleukin 17 (IL-17) signaling pathway and four other signaling pathways were identified as the potent underlying pathogenesis of both coronary artery disease (CAD) and MI using a systems biology approach. Accordingly, these findings can provide expression signatures and potential biomarkers in CAD and MI pathophysiology, which can contribute to both diagnosis and therapeutic purposes. Conclusion: Five signaling pathways were introduced in MI and CAD that were primarily involved in inflammation, including the IL-17 signaling pathway, TNF signaling pathway, toll-like receptor signaling pathway, C-type lectin receptor signaling pathway, and rheumatoid arthritis signaling pathway. |
- Organization WH [Internet]. Cardiovascular diseases (CVDs). [cited 17 May 2017]. Avilaible from: https://www.who.int/cardiovascular_diseases/en/
- Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852-66. doi: 10.1161/CIRCRESAHA.114.302721. PubMed PMID: 24902970.
- Krittanawong C, Liu Y, Mahtta D, Narasimhan B, Wang Z, Jneid H, et al. Non-traditional risk factors and the risk of myocardial infarction in the young in the US population-based cohort. Int J Cardiol Heart Vasc. 2020;30:100634. doi: 10.1016/j.ijcha.2020.100634. PubMed PMID: 32995474; PubMed Central PMCID: PMCPMC7516292.
- Won HH, Natarajan P, Dobbyn A, Jordan DM, Roussos P, Lage K, et al. Disproportionate Contributions of Select Genomic Compartments and Cell Types to Genetic Risk for Coronary Artery Disease. PLoS Genet. 2015;11:e1005622. doi: 10.1371/journal.pgen.1005622. PubMed PMID: 26509271; PubMed Central PMCID: PMCPMC4625039.
- Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18:331-44. doi: 10.1038/nrg.2016.160. PubMed PMID: 28286336; PubMed Central PMCID: PMCPMC5935119.
- Hill WD, Davies NM, Ritchie SJ, Skene NG, Bryois J, Bell S, et al. Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. Nat Commun. 2019;10:5741. doi: 10.1038/s41467-019-13585-5. PubMed PMID: 31844048; PubMed Central PMCID: PMCPMC6915786.
- Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808-15. doi: 10.1093/nar/gks1094. PubMed PMID: 23203871; PubMed Central PMCID: PMCPMC3531103.
- Harmeyer KM, Facompre ND, Herlyn M, Basu D. JARID1 Histone Demethylases: Emerging Targets in Cancer. Trends Cancer. 2017;3:713-25. doi: 10.1016/j.trecan.2017.08.004. PubMed PMID: 28958389; PubMed Central PMCID: PMCPMC5679451.
- Mokou M, Klein J, Makridakis M, Bitsika V, Bascands JL, Saulnier-Blache JS, et al. Proteomics based identification of KDM5 histone demethylases associated with cardiovascular disease. EBioMedicine. 2019;41:91-104. doi: 10.1016/j.ebiom.2019.02.040. PubMed PMID: 30826357; PubMed Central PMCID: PMCPMC6443027.
- Tian Y, Stamova B, Jickling GC, Xu H, Liu D, Ander BP, et al. Y chromosome gene expression in the blood of male patients with ischemic stroke compared with male controls. Gend Med. 2012;9:68-75 e3. doi: 10.1016/j.genm.2012.01.005. PubMed PMID: 22365286; PubMed Central PMCID: PMCPMC3454519.
- Zhao W, Smith JA, Mao G, Fornage M, Peyser PA, Sun YV, et al. The cis and trans effects of the risk variants of coronary artery disease in the Chr9p21 region. BMC Med Genomics. 2015;8:21. doi: 10.1186/s12920-015-0094-0. PubMed PMID: 25958224; PubMed Central PMCID: PMCPMC4432789.
- Armas-Gonzalez E, Dominguez-Luis MJ, Diaz-Martin A, Arce-Franco M, Castro-Hernandez J, Danelon G, et al. Role of CXCL13 and CCL20 in the recruitment of B cells to inflammatory foci in chronic arthritis. Arthritis Res Ther. 2018;20:114. doi: 10.1186/s13075-018-1611-2. PubMed PMID: 29880013; PubMed Central PMCID: PMCPMC5992813.
- Calvayrac O, Rodriguez-Calvo R, Alonso J, Orbe J, Martin-Ventura JL, Guadall A, et al. CCL20 is increased in hypercholesterolemic subjects and is upregulated by LDL in vascular smooth muscle cells: role of NF-kappaB. Arterioscler Thromb Vasc Biol. 2011;31:2733-41. doi: 10.1161/ATVBAHA.111.235721. PubMed PMID: 21852561.
- Safa A, Rashidinejad HR, Khalili M, Dabiri S, Nemati M, Mohammadi MM, et al. Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease. Cytokine. 2016;83:147-57. doi: 10.1016/j.cyto.2016.04.006. PubMed PMID: 27152707.
- Xu S, Cao X. Interleukin-17 and its expanding biological functions. Cell Mol Immunol. 2010;7:164-74. doi: 10.1038/cmi.2010.21. PubMed PMID: 20383173; PubMed Central PMCID: PMCPMC4002915.
- Mora-Ruiz MD, Blanco-Favela F, Chavez Rueda AK, Legorreta-Haquet MV, Chavez-Sanchez L. Role of interleukin-17 in acute myocardial infarction. Mol Immunol. 2019;107:71-8. doi: 10.1016/j.molimm.2019.01.008. PubMed PMID: 30660992.
- Rolski F, Blyszczuk P. Complexity of TNF-alpha Signaling in Heart Disease. J Clin Med. 2020;9. doi: 10.3390/jcm9103267. PubMed PMID: 33053859; PubMed Central PMCID: PMCPMC7601316.
- Zhang H, Shi N, Diao Z, Chen Y, Zhang Y. Therapeutic potential of TNFalpha inhibitors in chronic inflammatory disorders: Past and future. Genes Dis. 2021;8:38-47. doi: 10.1016/j.gendis.2020.02.004. PubMed PMID: 33569512; PubMed Central PMCID: PMCPMC7859422.
- Monaco C, Nanchahal J, Taylor P, Feldmann M. Anti-TNF therapy: past, present and future. Int Immunol. 2015;27:55-62. doi: 10.1093/intimm/dxu102. PubMed PMID: 25411043; PubMed Central PMCID: PMCPMC4279876.
- Lee J, Lee S, Zhang H, Hill MA, Zhang C, Park Y. Interaction of IL-6 and TNF-alpha contributes to endothelial dysfunction in type 2 diabetic mouse hearts. PLoS One. 2017;12:e0187189. doi: 10.1371/journal.pone.0187189. PubMed PMID: 29095915; PubMed Central PMCID: PMCPMC5667841.
- Yu L, Feng Z. The Role of Toll-Like Receptor Signaling in the Progression of Heart Failure. Mediators Inflamm. 2018;2018:9874109. doi: 10.1155/2018/9874109. PubMed PMID: 29576748; PubMed Central PMCID: PMCPMC5822798.
- Gao W, Xiong Y, Li Q, Yang H. Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Diseases: A Journey from Molecular to Nano Therapeutics. Front Physiol. 2017;8:508. doi: 10.3389/fphys.2017.00508. PubMed PMID: 28769820; PubMed Central PMCID: PMCPMC5516312.
- Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9. doi: 10.1126/scitranslmed.aal2658. PubMed PMID: 28701474.
- Suzuki-Inoue K, Osada M, Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost. 2017;15:219-29. doi: 10.1111/jth.13590. PubMed PMID: 27960039.
- Fei M, Xiang L, Chai X, Jin J, You T, Zhao Y, et al. Plasma soluble C-type lectin-like receptor-2 is associated with the risk of coronary artery disease. Front Med. 2020;14:81-90. doi: 10.1007/s11684-019-0692-x. PubMed PMID: 31280468.
- Chen DQ, Kong XS, Shen XB, Huang MZ, Zheng JP, Sun J, et al. Identification of Differentially Expressed Genes and Signaling Pathways in Acute Myocardial Infarction Based on Integrated Bioinformatics Analysis. Cardiovasc Ther. 2019;2019:8490707. doi: 10.1155/2019/8490707. PubMed PMID: 31772617; PubMed Central PMCID: PMCPMC6739802.
|