Karimpour, Mohamma, Haghani, Masoud, Bevelacqua, Joseph J, Welsh, James S, Mortazavi, Seyed Alireza, Mortazavi, Seyed Mohammad Javad, Ghadimi-Moghadam, Abdolkarim. (1401). The Paradoxical Role of far-Ultraviolet C (far-UVC) in Inactivation of SARS-CoV-2: The Issue of Droplet Size. سامانه مدیریت نشریات علمی, 12(5), 535-538. doi: 10.31661/jbpe.v0i0.2204-1482
Mohamma Karimpour; Masoud Haghani; Joseph J Bevelacqua; James S Welsh; Seyed Alireza Mortazavi; Seyed Mohammad Javad Mortazavi; Abdolkarim Ghadimi-Moghadam. "The Paradoxical Role of far-Ultraviolet C (far-UVC) in Inactivation of SARS-CoV-2: The Issue of Droplet Size". سامانه مدیریت نشریات علمی, 12, 5, 1401, 535-538. doi: 10.31661/jbpe.v0i0.2204-1482
Karimpour, Mohamma, Haghani, Masoud, Bevelacqua, Joseph J, Welsh, James S, Mortazavi, Seyed Alireza, Mortazavi, Seyed Mohammad Javad, Ghadimi-Moghadam, Abdolkarim. (1401). 'The Paradoxical Role of far-Ultraviolet C (far-UVC) in Inactivation of SARS-CoV-2: The Issue of Droplet Size', سامانه مدیریت نشریات علمی, 12(5), pp. 535-538. doi: 10.31661/jbpe.v0i0.2204-1482
Karimpour, Mohamma, Haghani, Masoud, Bevelacqua, Joseph J, Welsh, James S, Mortazavi, Seyed Alireza, Mortazavi, Seyed Mohammad Javad, Ghadimi-Moghadam, Abdolkarim. The Paradoxical Role of far-Ultraviolet C (far-UVC) in Inactivation of SARS-CoV-2: The Issue of Droplet Size. سامانه مدیریت نشریات علمی, 1401; 12(5): 535-538. doi: 10.31661/jbpe.v0i0.2204-1482
The Paradoxical Role of far-Ultraviolet C (far-UVC) in Inactivation of SARS-CoV-2: The Issue of Droplet Size
1MSc, Medical Physics and Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
2PhD, Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
3PhD, Bevelacqua Resources, Richland, Washington 99352, United States
4PhD, Department of Radiation Oncology Edward Hines Jr VA Hospital Hines, Illinois. United States
5PhD, Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago, IL, United States
6MD, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
7PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
8MD, Department of Pediatric Infectious Diseases, Yasuj University of Medical Sciences, Yasuj, Iran
چکیده
The Omicron variant is spreading at a rate we have never observed with any previous variant. A lot of efforts have been taken to inactivate SARS-CoV-2, especially the omicron variant. Specific wavelength ranges of electromagnetic radiation can be exploited to inactivate coronaviruses. Previous studies show that 222-nm far-Ultraviolet C (far-UVC) light inactivates airborne influenza virus efficiently. Considering the similar genomic sizes of all human coronaviruses, other human coronaviruses, such as SARS-CoV-2, would be expected to be inactivated by far-UVC with a similar efficacy. Taking this into account, it is concluded that exposure to far-UVC can be introduced as a safe method that significantly reduces the ambient level of airborne coronaviruses in crowded places. Biomolecules, particularly proteins, strongly absorb ultraviolet radiation at a wavelength of around 200 nm. Given this consideration, far-UVC has a limited ability to permeate biological materials. Thus, for example, in only around 0.3 mm of tissue, the intensity of 200-nm UV radiation is decreased by half, compared to tissue penetration of about 3 mm at 250 nm. This paper aims to answer the key question of whether far-UVC can penetrate SARS-CoV-2 inside inhalable respiratory droplets (with diameters up to 100 µm).
Buonanno M, Welch D, Shuryak I, Brenner DJ. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci Rep. 2020;10(1):10285. doi: 10.1038/s41598-020-67211-2. PubMed PMID: 32581288. PubMed PMCID: PMC7314750.
Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, Wang M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. 2020;323(14):1406-7. doi: 10.1001/jama.2020.2565. PubMed PMID: 32083643. PubMed PMCID: PMC7042844.
Kowalski W. Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection. Springer; 2010.
Budowsky EI, Bresler SE, Friedman EA, Zheleznova NV. Principles of selective inactivation of viral genome. Arch Virol. 1981;68(3-4):239-47. doi: 10.1007/BF01314577. PubMed PMID: 7271457.
Naunovic Z, Lim S, Blatchley ER 3rd. Investigation of microbial inactivation efficiency of a UV disinfection system employing an excimer lamp. Water Res. 2008;42(19):4838-46. doi: 10.1016/j.watres.2008.09.001. PubMed PMID: 18848711.
Buonanno M, Ponnaiya B, Welch D, Stanislauskas M, Randers-Pehrson G, et al. Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light. Radiat Res. 2017;187(4):483-91. doi: 10.1667/RR0010CC.1. PubMed PMID: 28225654. PubMed PMCID: PMC5552051.
Buonanno M, Randers-Pehrson G, Bigelow AW, Trivedi S, Lowy FD, et al. 207-nm UV light - a promising tool for safe low-cost reduction of surgical site infections. I: in vitro studies. PLoS One. 2013;8(10):e76968. doi: 10.1371/journal.pone.0076968. PubMed PMID: 24146947. PubMed PMCID: PMC3797730.
Buonanno M, Stanislauskas M, Ponnaiya B, Bigelow AW, Randers-Pehrson G, Xu Y, et al. 207-nm UV Light-A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. II: In-Vivo Safety Studies. PLoS One. 2016;11(6):e0138418. doi: 10.1371/journal.pone.0138418. PubMed PMID: 27275949. PubMed PMCID: PMC4898708.
Ponnaiya B, Buonanno M, Welch D, Shuryak I, Randers-Pehrson G, Brenner DJ. Far-UVC light prevents MRSA infection of superficial wounds in vivo. PLoS One. 2018;13(2):e0192053. doi: 10.1371/journal.pone.0192053. PubMed PMID: 29466457. PubMed PMCID: PMC5821446.
Lorian V, Zak O, Suter J, Bruecher C. Staphylococci, in vitro and in vivo. Diagn Microbiol Infect Dis. 1985;3(5):433-44. doi: 10.1016/0732-8893(85)90082-3. PubMed PMID: 4028668.
Coohill TP. Virus-cell interactions as probes for vacuum-ultraviolet radiation damage and repair. Photochem Photobiol. 1986;44(3):359-63. doi: 10.1111/j.1751-1097.1986.tb04676.x. PubMed PMID: 3786457.
Metzler DE. Biochemistry (2 Volume Set): The Chemical Reactions of Living Cells. Elsevier; 2003.
Li H, Leong FY, Xu G, Kang CW, Lim KH, Tan BH, Loo CM. Airborne dispersion of droplets during coughing: a physical model of viral transmission. Sci Rep. 2021;11(1):4617. doi: 10.1038/s41598-021-84245-2. PubMed PMID: 33633316. PubMed PMCID: PMC7907382.
Zhang H, Li D, Xie L, Xiao Y. Documentary Research of Human Respiratory Droplet Characteristics. Procedia Eng. 2015;121:1365-74. doi: 10.1016/j.proeng.2015.09.023. PubMed PMID: 32288921. PubMed PMCID: PMC7128962.
Yang S, Lee GW, Chen CM, Wu CC, Yu KP. The size and concentration of droplets generated by coughing in human subjects. J Aerosol Med. 2007;20(4):484-94. doi: 10.1089/jam.2007.0610. PubMed PMID: 18158720.