- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30. doi: 10.3322/caac.21332. PubMed PMID: 26742998.
- Bernard WS, Christopher PW. World cancer report 2014. World Health Organization; 2014.
- Bonavita I, Rafael-Palou X, Ceresa M, Piella G, Ribas V, González Ballester MA. Integration of convolutional neural networks for pulmonary nodule malignancy assessment in a lung cancer classification pipeline. Comput Methods Programs Biomed. 2020;185:105172. doi: 10.1016/j.cmpb.2019.105172. PubMed PMID: 31710985.
- Da Silva GLF, Valente TLA, Silva AC, de Paiva AC, Gattass M. Convolutional neural network-based PSO for lung nodule false positive reduction on CT images. Comput Methods Programs Biomed. 2018;162:109-18. doi: 10.1016/j.cmpb.2018.05.006. PubMed PMID: 29903476.
- Veronica BK. An effective neural network model for lung nodule detection in CT images with optimal fuzzy model. Multimedia Tools and Applications. 2020;79(19):14291-311. doi: 10.1007/s11042-020-08618-x.
- Petkovska I, Brown MS, Goldin JG, Kim HJ, McNitt-Gray MF, Abtin FG, Ghurabi RJ, Aberle DR. The effect of lung volume on nodule size on CT. Acad Radiol. 2007;14(4):476-85. doi: 10.1016/j.acra.2007.01.008. PubMed PMID: 17368218. PubMed PMCID: PMC2752296.
- Jacobs C, Van Rikxoort EM, Twellmann T, Scholten ET, et al. Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images. Med Image Anal. 2014;18(2):374-84. doi: 10.1016/j.media.2013.12.001. PubMed PMID: 24434166.
- Silva GL, Carvalho Filho AO, Silva AC, Paiva AC, Gattass M. Taxonomic indexes for differentiating malignancy of lung nodules on CT images. Research on Biomedical Engineering. 2016;32:263-72. doi: 10.1590/2446-4740.04615.
- Harsono IW, Liawatimena S, Cenggoro TW. Lung nodule detection and classification from Thorax CT-scan using RetinaNet with transfer learning. Journal of King Saud University-Computer and Information Sciences. 2022;34(3):567-77. doi: 10.1016/j.jksuci.2020.03.013.
- Badura P, Pietka E. Soft computing approach to 3D lung nodule segmentation in CT. Comput Biol Med. 2014;53:230-43. doi: 10.1016/j.compbiomed.2014.08.005. PubMed PMID: 25173811.
- Bong CW, Lam HY, Khader AT, Kamarulzaman H. Adaptive multi-objective archive-based hybrid scatter search for segmentation in lung computed tomography imaging. Engineering Optimization. 2012;44(3):327-50. doi: 10.1080/0305215X.2011.639369.
- Gonçalves L, Novo J, Campilho A. Hessian based approaches for 3D lung nodule segmentation. Expert Systems with Applications. 2016;61:1-5. doi: 10.1016/j.eswa.2016.05.024.
- Javaid M, Javid M, Rehman MZ, Shah SI. A novel approach to CAD system for the detection of lung nodules in CT images. Comput Methods Programs Biomed. 2016;135:125-39. doi: 10.1016/j.cmpb.2016.07.031. PubMed PMID: 27586486.
- John J, Mini MG. Multilevel thresholding based segmentation and feature extraction for pulmonary nodule detection. Procedia Technology. 2016;24:957-63. doi: 10.1016/j.protcy.2016.05.209.
- Keshani M, Azimifar Z, Tajeripour F, Boostani R. Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system. Comput Biol Med. 2013;43(4):287-300. doi: 10.1016/j.compbiomed.2012.12.004. PubMed PMID: 23369568.
- Park SC, Tan J, Wang X, Lederman D, Leader JK, Kim SH, Zheng B. Computer-aided detection of early interstitial lung diseases using low-dose CT images. Physics in Medicine & Biology. 2011;56(4):1139. doi: 10.1088/0031-9155/56/4/016.
- Song Q, Zhao L, Luo X, Dou X. Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images. J Healthc Eng. 2017;2017:8314740. doi: 10.1155/2017/8314740. PubMed PMID: 29065651. PubMed PMCID: PMC5569872.
- Biederer J, Mirsadraee S, Beer M, Molinari F, Hintze C, et al. MRI of the lung (3/3)-current applications and future perspectives. Insights Imaging. 2012;3(4):373-86. doi: 10.1007/s13244-011-0142-z. PubMed PMID: 22695943. PubMed PMCID: PMC3481076.
- Li Y, Zhang L, Chen H, Yang N. Lung nodule detection with deep learning in 3D thoracic MR images. IEEE Access. 2019;7:37822-32. doi: 10.1109/ACCESS.2019.2905574.
- Bach PB, Mirkin JN, Oliver TK, Azzoli CG, Berry DA, Brawley OW, Byers T, et al. Benefits and harms of CT screening for lung cancer: a systematic review. 2012;307(22):2418-29. doi: 10.1001/jama.2012.5521. PubMed PMID: 22610500. PubMed PMCID: PMC3709596.
- MacMahon H, Austin JH, Gamsu G, Herold CJ, Jett JR, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology. 2005;237(2):395-400. doi: 10.1148/radiol.2372041887. PubMed PMID: 16244247.
- American College of Radiology. Lung CT screening reporting and data system (lung-RADS). Reston: American College of Radiology; 2014.
- National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395-409. doi: 10.1056/NEJMoa1102873. PubMed PMID: 21714641. PubMed PMCID: PMC4356534.
- Moyer VA. Screening for lung cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160(5):330-8. doi: 10.7326/M13-2771. PubMed PMID: 24378917.
- Patz EF Jr, Pinsky P, Gatsonis C, Sicks JD, Kramer BS, Tammemägi MC, et al. Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern Med. 2014;174(2):269-74. doi: 10.1001/jamainternmed.2013.12738. PubMed PMID: 24322569. PubMed PMCID: PMC4040004.
- Endo M, Aramaki T, Asakura K, Moriguchi M, Akimaru M, et al. Content-based image-retrieval system in chest computed tomography for a solitary pulmonary nodule: method and preliminary experiments. Int J Comput Assist Radiol Surg. 2012;7(2):331-8. doi: 10.1007/s11548-011-0668-z. PubMed PMID: 22258753.
- Valente IR, Cortez PC, Neto EC, Soares JM, De Albuquerque VH, Tavares JM. Automatic 3D pulmonary nodule detection in CT images: A survey. Comput Methods Programs Biomed. 2016;124:91-107. doi: 10.1016/j.cmpb.2015.10.006. PubMed PMID: 26652979.
- Naqi SM, Sharif M, Jaffar A. Lung nodule detection and classification based on geometric fit in parametric form and deep learning. Neural Computing and Applications. 2020;32(9):4629-47. doi: 10.1007/s00521-018-3773-x.
- Manickavasagam R, Selvan S. Automatic Detection and Classification of Lung Nodules in CT Image Using Optimized Neuro Fuzzy Classifier with Cuckoo Search Algorithm. J Med Syst. 2019;43(3):77. doi: 10.1007/s10916-019-1177-9. PubMed PMID: 30758682.
- Ali I, Muzammil M, Haq IU, Khaliq AA, Abdullah S. Efficient lung nodule classification using transferable texture convolutional neural network. Ieee Access. 2020;8:175859-70. doi: 10.1109/ACCESS.2020.3026080.
- Tajbakhsh N, Suzuki K. Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: MTANNs vs. CNNs. Pattern Recognition. 2017;63:476-86. doi: 10.1016/j.patcog.2016.09.029.
- Li G, Zhou W, Chen W, Sun F, Fu Y, Gong F, Zhang H. Study on the detection of pulmonary nodules in CT images based on deep learning. IEEE Access. 2020;8:67300-9. doi: 10.1109/ACCESS.2020.2984381.
- Asuntha A, Srinivasan A. Deep learning for lung Cancer detection and classification. Multimedia Tools and Applications. 2020;79(11):7731-62. doi: 10.1007/s11042-019-08394-3.
- Zhai Z, Shi D, Cheng Y, Guo H. Computer-aided detection of lung nodules with fuzzy min-max neural network for false positive reduction. In: 2014 sixth international conference on intelligent human-machine systems and cybernetics; Hangzhou, China: IEEE; 2014. p. 26-7.
- Yan X, Pang J, Qi H, Zhu Y, Bai C, Geng X, Liu M, Terzopoulos D, Ding X. Classification of Lung Nodule Malignancy Risk on Computed Tomography Images Using Convolutional Neural Network: A Comparison Between 2D and 3D Strategies. Asian Conference on Computer Vision; Springer, Cham; 2017.
- Wang S, Zhou M, Liu Z, Liu Z, Gu D, Zang Y, Dong D, Gevaert O, Tian J. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation. Med Image Anal. 2017;40:172-83.
- El-Bana S, Al-Kabbany A, Sharkas M. A Two-Stage Framework for Automated Malignant Pulmonary Nodule Detection in CT Scans. Diagnostics (Basel). 2020;10(3):131. doi: 10.3390/diagnostics10030131. PubMed PMID: 32121281. PubMed PMCID: PMC7151085.
- Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38(2):915-31. doi: 10.1118/1.3528204. PubMed PMID: 21452728. PubMed PMCID: PMC3041807.
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. doi: 10.1038/nature14539. PubMed PMID: 26017442.
- Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. 25th International Conference on Neural Information Processing Systems; Lake Tahoe, Nevada: Curran Associates Inc; 2012. p. 1097–1105.
- Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra Acharya U. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020;121:103792. doi: 10.1016/j.compbiomed.2020.103792. PubMed PMID: 32568675. PubMed PMCID: PMC7187882.
- Zhang X, Liu X, Zhang B, Dong J, Zhang B, Zhao S, Li S. Accurate segmentation for different types of lung nodules on CT images using improved U-Net convolutional network. Medicine (Baltimore). 2021;100(40):e27491. doi: 10.1097/MD.0000000000027491. PubMed PMID: 34622882. PubMed PMCID: PMC8500581.
- Banu SF, Sarker MM, Abdel-Nasser M, Puig D, Raswan HA. AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation. Applied Sciences. 2021;11(21):10132.
- Monkam P, Qi S, Xu M, Han F, Zhao X, Qian W. CNN models discriminating between pulmonary micro-nodules and non-nodules from CT images. Biomed Eng Online. 2018;17(1):96. doi: 10.1186/s12938-018-0529-x. PubMed PMID: 30012167. PubMed PMCID: PMC6048884.
|