- Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422-9. doi: 10.1016/j.apmr.2007.11.005. PubMed PMID: 18295618.
- Renzi R, Unwin N, Jubelirer R, Haag L. An international comparison of lower extremity amputation rates. Ann Vasc Surg. 2006;20(3):346-50. doi: 10.1007/s10016-006-9044-9. PubMed PMID: 16779516.
- Hafner BJ, Willingham LL, Buell NC, Allyn KJ, Smith DG. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee. Arch Phys Med Rehabil. 2007;88(2):207-17. doi: 10.1016/j.apmr.2006.10.030. PubMed PMID: 17270519.
- Herr H, Wilkenfeld A. User-adaptive control of a magnetorheological prosthetic knee. Industrial Robot. 2003;30(1)42-56. doi: 10.1108/01439910310457706.
- Stinus H. Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint. Z Orthop Ihre Grenzgeb. 2000;138(3):278-82. doi: 10.1055/s-2000-10149. PubMed PMID: 10929622.
- Baimyshev A, Lawson B, Goldfarb M. Design and preliminary assessment of lightweight swing-assist knee prosthesis. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); USA: IEEE; 2018.
- Doke J, Donelan JM, Kuo AD. Mechanics and energetics of swinging the human leg. J Exp Biol. 2005;208(Pt 3):439-45. doi: 10.1242/jeb.01408. PubMed PMID: 15671332.
- Winter DA. Biomechanics and motor control of human gait: normal, elderly and pathological. Canada: Transport Research Laboratory; 1991.
- Hahn A, Lang M, Stuckart C. Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings. Medicine (Baltimore). 2016;95(45):e5386. doi: 10.1097/MD.0000000000005386. PubMed PMID: 27828871. PMCID: PMC5106077.
- Murthy Arelekatti V, Winter AG. Design and preliminary field validation of a fully passive prosthetic knee mechanism for users with transfemoral amputation in India. J Mech Robot. 2018;10(3). doi: 10.1115/1.4039222.
- Segal AD, Orendurff MS, Klute GK, McDowell ML, Pecoraro JA, Shofer J, Czerniecki JM. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev. 2006;43(7):857-70. doi: 10.1682/jrrd.2005.09.0147. PubMed PMID: 17436172.
- Prinsen EC, Nederhand MJ, Sveinsdóttir HS, Prins MR, et al. The influence of a user-adaptive prosthetic knee across varying walking speeds: A randomized cross-over trial. Gait Posture. 2017;51:254-60. doi: 10.1016/j.gaitpost.2016.11.015. PubMed PMID: 27838569.
- Czerniecki JM. Rehabilitation in limb deficiency. 1. Gait and motion analysis. Arch Phys Med Rehabil. 1996;77(3 Suppl):S3-8. doi: 10.1016/s0003-9993(96)90236-1. PubMed PMID: 8599543.
- Lemaire ED, Fisher FR. Osteoarthritis and elderly amputee gait. Arch Phys Med Rehabil. 1994;75(10):1094-9. doi: 10.1016/0003-9993(94)90084-1. PubMed PMID: 7944914.
- Radin EL, Paul IL. Response of joints to impact loading. I. In vitro wear. Arthritis Rheum. 1971;14(3):356-62. doi: 10.1002/art.1780140306. PubMed PMID: 5562019.
- Hurwitz DE, Sumner DR, Block JA. Bone density, dynamic joint loading and joint degeneration. A review. Cells Tissues Organs. 2001;169(3):201-9. doi: 10.1159/000047883. PubMed PMID: 11455115.
- Sup F, Bohara A, Goldfarb M. Design and Control of a Powered Transfemoral Prosthesis. Int J Rob Res. 2008;27(2):263-73. doi: 10.1177/0278364907084588. PubMed PMID: 19898683. PubMed PMCID: PMC2773553.
- Lambrecht BG, Kazerooni H. Design of a semi-active knee prosthesis. 2009 IEEE International Conference on Robotics and Automation; Kobe, Japan: IEEE; 2009. doi: 10.1109/ROBOT.2009.5152828.
- Cao W, Yu H, Chen W, Meng Q, Chen C. Design and evaluation of a novel microprocessor-controlled prosthetic knee. IEEE Access. 2019;7:178553-62. doi: 10.1109/ACCESS.2019.2957823.
- Kent JA, Arelekatti VNM, Petelina NT, Johnson WB, Brinkmann JT, et al. Knee Swing Phase Flexion Resistance Affects Several Key Features of Leg Swing Important to Safe Transfemoral Prosthetic Gait. IEEE Trans Neural Syst Rehabil Eng. 2021;29:965-73. doi: 10.1109/TNSRE.2021.3082459. PubMed PMID: 34018934. PubMed PMCID: PMC8223905.
- Lenzi T, Hargrove LJ, Sensinger JW. Minimum jerk swing control allows variable cadence in powered transfemoral prostheses. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2492-5. doi: 10.1109/EMBC.2014.6944128. PubMed PMID: 25570496.
- Mendez J, Hood S, Gunnel A, Lenzi T. Powered knee and ankle prosthesis with indirect volitional swing control enables level-ground walking and crossing over obstacles. Sci Robot. 2020;5(44):eaba6635. doi: 10.1126/scirobotics.aba6635. PubMed PMID: 33022611. PubMed PMCID: PMC8020725.
- Awad M, Sek Tee K, Dehghani A, Moser D, Zahedi S. Design of an efficient back-drivable semi-active above knee prosthesis. Field Robot. 2012:35-42. doi: 10.1142/9789814374286_0004.
- Smidt GL. Hip motion and related factors in walking. Phys Ther. 1971;51(1):9-22. doi: 10.1093/ptj/51.1.9. PubMed PMID: 5539669.
- Hale S. The effect of walking speed on the joint displacement patterns and forces and moments acting on the above-knee amputee prosthetic leg. JPO: J Prosthet Orthot. 1991;3(2):59-78. doi: 10.1097/00008526-199100320-00002.
- Yamazaki N, Ohta K, Ohgi Y. Mechanical energy transfer by internal force during the swing phase of running. Procedia Eng. 2012;34:772-7. doi: 10.1016/j.proeng.2012.04.132.
- Torki AA, Taher MF, Ahmed AS. Design and implementation of a swing phase control system for a prosthetic knee. 2008 Cairo International Biomedical Engineering Conference; Cairo, Egypt: IEEE; 2008. doi: 10.1109/CIBEC.2008.4786085.
- Geil MD, Safaeepour Z, Giavedoni B, Coulter CP. Walking kinematics in young children with limb loss using early versus traditional prosthetic knee prescription protocols. PLoS One. 2020;15(4):e0231401. doi: 10.1371/journal.pone.0231401. PubMed PMID: 32275734. PubMed PMCID: PMC7147787.
- Hansen AH, Childress DS, Miff SC, Gard SA, Mesplay KP. The human ankle during walking: implications for design of biomimetic ankle prostheses. J Biomech. 2004;37(10):1467-74. doi: 10.1016/j.jbiomech.2004.01.017. PubMed PMID: 15336920.
- Johansson JL, Sherrill DM, Riley PO, Bonato P, Herr H. A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. Am J Phys Med Rehabil. 2005;84(8):563-75. doi: 10.1097/01.phm.0000174665.74933.0b. PubMed PMID: 16034225.
- Lenzi T, Hargrove L, Sensinger J. Speed-adaptation mechanism: Robotic prostheses can actively regulate joint torque. IEEE Robot Autom Maga. 2014;21(4):94-107. doi: 10.1109/MRA.2014.2360305.
- Yokogushi K, Narita H, Uchiyama E, Chiba S, Nosaka T, Yamakoshi K. Biomechanical and clinical evaluation of a newly designed polycentric knee of transfemoral prosthesis. J Rehabil Res Dev. 2004;41(5):675-82. doi: 10.1682/jrrd.2003.05.0076. PubMed PMID: 15558397.
- Arelekatti VNM. Design of low-cost, fully passive prosthetic knee for persons with transfemoral amputation in India [dissertation]. Massachusetts Institute of Technology; 2015.
- Kirker S, Keymer S, Talbot J, Lachmann S. An assessment of the intelligent knee prosthesis. Clin Rehab. 1996;10(3):267-73. doi:10.1177/026921559601000314.
- Fey NP, Simon AM, Young AJ, Hargrove LJ. Controlling Knee Swing Initiation and Ankle Plantarflexion With an Active Prosthesis on Level and Inclined Surfaces at Variable Walking Speeds. IEEE J Transl Eng Health Med. 2014;2:2100412. doi: 10.1109/JTEHM.2014.2343228. PubMed PMID: 27170878. PubMed PMCID: PMC4861549.
|