Background: One of the main reasons for neonatal deaths is preterm delivery, and infants who have survived preterm birth (PB) are at risk of significant health complications. However, an effective method for reliable and accurate prediction of preterm labor has yet to be proposed. Objective: This study proposes an artificial neural network (ANN)-based approach for early prediction of PB, and consequently can hint physicians to start the treatment earlier, reducing the chance of morbidity and mortality in the infant. Material and Methods: This historical cohort study proposes a feed-forward ANN with 7 hidden neurons to predict PB. Thirteen risk factors of PB were collected from 300 pregnant women (150 with preterm delivery and 150 normal) as the ANN inputs from 2018 to 2019. From each group, 70%, 15%, and 15% of the subjects were randomly selected for training, validation, and testing of the model, respectively. Results: The ANN achieved an accuracy of 79.03% for the classification of the subjects into two classes normal and PB. Moreover, a sensitivity of 73.45% and specificity of 84.62% were obtained. The advantage of this approach is that the risk factors used for prediction did not require any lab test and were collected in a questionnaire. Conclusion: The efficacy of the proposed approach for the early identification of pregnant women, who are at high risk of preterm delivery, leads to necessary care and clinical interventions, applied during the pregnancy. |
- Sendeku FW, Beyene FY, Tesfu AA, Bante SA, Azeze GG. Preterm birth and its associated factors in Ethiopia: a systematic review and meta-analysis. Afr Health Sci. 2021;21(3):1321-33. doi: 10.4314/ahs.v21i3.43. PubMed PMID: 35222597. PubMed PMCID: PMC8843273.
- Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88(1):31-8. doi: 10.2471/BLT.08.062554. PubMed PMID: 20428351. PubMed PMCID: PMC2802437.
- Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. 2008;371(9606):75-84. doi: 10.1016/S0140-6736(08)60074-4. PubMed PMID: 18177778. PubMed PMCID: PMC7134569.
- Petrou S. The economic consequences of preterm birth during the first 10 years of life. BJOG. 2005;112:10-5. doi: 10.1111/j.1471-0528.2005.00577.x. PubMed PMID: 15715587.
- Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. The Lancet. 2016;388(10063):3027-35. doi: 10.1016/S0140-6736(16)31593-8.
- Nikolova T, Bayev O, Nikolova N, Di Renzo GC. Comparison of a novel test for placental alpha microglobulin-1 with fetal fibronectin and cervical length measurement for the prediction of imminent spontaneous preterm delivery in patients with threatened preterm labor. J Perinat Med. 2015;43(4):395-402. doi: 10.1515/jpm-2014-0300. PubMed PMID: 25562603.
- Jung EY, Park JW, Ryu A, Lee SY, Cho SH, Park KH. Prediction of impending preterm delivery based on sonographic cervical length and different cytokine levels in cervicovaginal fluid in preterm labor. J Obstet Gynaecol Res. 2016;42(2):158-65. doi: 10.1111/jog.12882. PubMed PMID: 26556477.
- García-Blanco A, Diago V, Serrano De La Cruz V, Hervás D, Cháfer-Pericás C, Vento M. Can stress biomarkers predict preterm birth in women with threatened preterm labor? 2017;83:19-24. doi: 10.1016/j.psyneuen.2017.05.021. PubMed PMID: 28558282.
- Euliano TY, Nguyen MT, Darmanjian S, McGorray SP, Euliano N, Onkala A, Gregg AR. Monitoring uterine activity during labor: a comparison of 3 methods. Am J Obstet Gynecol. 2013;208(1):66.e1-6. doi: 10.1016/j.ajog.2012.10.873. PubMed PMID: 23122926. PubMed PMCID: PMC3529844.
- Frey HA, Klebanoff MA. The epidemiology, etiology, and costs of preterm birth. Semin Fetal Neonatal Med. 2016;21(2):68-73. doi: 10.1016/j.siny.2015.12.011. PubMed PMID: 26794420.
- Rundell K, Panchal B. Preterm Labor: Prevention and Management. Am Fam Physician. 2017;95(6):366-72. PubMed PMID: 28318214.
- Choi SJ. Use of progesterone supplement therapy for prevention of preterm birth: review of literatures. Obstet Gynecol Sci. 2017;60(5):405-20. doi: 10.5468/ogs.2017.60.5.405. PubMed PMID: 28989916. PubMed PMCID: PMC5621069.
- Catley C, Frize M, Walker CR, Petriu DC. Predicting high-risk preterm birth using artificial neural networks. IEEE Trans Inf Technol Biomed. 2006;10(3):540-9. doi: 10.1109/titb.2006.872069. PubMed PMID: 16871723.
- Mas-Cabo J, Prats-Boluda G, Garcia-Casado J, Alberola-Rubio J, Perales A, Ye-Lin Y. Design and assessment of a robust and generalizable ANN-based classifier for the prediction of premature birth by means of multichannel electrohysterographic records. Journal of Sensors. 2019;2019(7):1-13. doi: 10.1155/2019/5373810.
- Włodarczyk T, Płotka S, Rokita P, Sochacki-Wójcicka N, Wójcicki J, Lipa M, Trzciński T. Spontaneous preterm birth prediction using convolutional neural networks. InMedical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. Springer, Cham; 2020. p. 274-83.
- Yang L, Wang P, Jiang Y, Chen J. Studying the explanatory capacity of artificial neural networks for understanding environmental chemical quantitative structure-activity relationship models. J Chem Inf Model. 2005;45(6):1804-11. doi: 10.1021/ci050079x. PubMed PMID: 16309287.
- Lilliecreutz C, Larén J, Sydsjö G, Josefsson A. Effect of maternal stress during pregnancy on the risk for preterm birth. BMC Pregnancy Childbirth. 2016;16:5. doi: 10.1186/s12884-015-0775-x. PubMed PMID: 26772181. PubMed PMCID: PMC4714539.
- Elaveyini U, Devi SP, Rao KS. Neural networks prediction of preterm delivery with first trimester bleeding. Arch Gynecol Obstet. 2011;283(5):971-9. doi: 10.1007/s00404-010-1469-2. PubMed PMID: 20449599.
- Lee KS, Ahn KH. Artificial Neural Network Analysis of Spontaneous Preterm Labor and Birth and Its Major Determinants. J Korean Med Sci. 2019;34(16):e128. doi: 10.3346/jkms.2019.34.e128. PubMed PMID: 31020816. PubMed PMCID: PMC6484180.
- Huang L, Hou Q, Huang Y, Ye J, Huang S, et al. Serum multiple cytokines for the prediction of spontaneous preterm birth in asymptomatic women: A nested case-control study. Cytokine. 2019;117:91-7. doi: 10.1016/j.cyto.2019.02.007. PubMed PMID: 30831445.
- Bachkangi P, Taylor AH, Bari M, Maccarrone M, Konje JC. Prediction of preterm labour from a single blood test: The role of the endocannabinoid system in predicting preterm birth in high-risk women. Eur J Obstet Gynecol Reprod Biol. 2019;243:1-6. doi: 10.1016/j.ejogrb.2019.09.029. PubMed PMID: 31618675.
- Carlisle N, Chandiramani M, Carter J, Shennan AH. Reply: Evaluation of the quantitative fetal fibronectin test and PAMG-1 test for the prediction of spontaneous preterm birth in patients with signs and symptoms suggestive of preterm labor. J Matern Fetal Neonatal Med. 2020;33(14):2505. doi: 10.1080/14767058.2018.1547704. PubMed PMID: 30526197.
- Radan AP, Aleksandra Polowy J, Heverhagen A, Simillion C, Baumann M, et al. Cervico-vaginal placental α-macroglobulin-1 combined with cervical length for the prediction of preterm birth in women with threatened preterm labor. Acta Obstet Gynecol Scand. 2020;99(3):357-63. doi: 10.1111/aogs.13744. PubMed PMID: 31587255.
- Ijabi J, Moradi-Sardareh H, Afrisham R, Seifi F, Ijabi R. SKA2 gene - A novel biomarker for latent anxiety and preterm birth prediction. Eur J Obstet Gynecol Reprod Biol. 2019;237:106-12. doi: 10.1016/j.ejogrb.2019.04.013. PubMed PMID: 31035118.
|