Gangwar, Vinod Kumar, Gurjar, Om Prakash, Kumar, Lalit, Agarwal, Avinash, Mishra, Vineet Kumar, Prasad Mishra, Surendra, Pandey, Saket. (1401). Dosimetric Evaluation of the Treatment Plan on Indigenous Heterogeneous Phantoms using Analytical Anisotropic Algorithm and Acuros-XB Algorithm for Different Photon Energies. سامانه مدیریت نشریات علمی, 12(3), 237-244. doi: 10.31661/jbpe.v0i0.2012-1246
Vinod Kumar Gangwar; Om Prakash Gurjar; Lalit Kumar; Avinash Agarwal; Vineet Kumar Mishra; Surendra Prasad Mishra; Saket Pandey. "Dosimetric Evaluation of the Treatment Plan on Indigenous Heterogeneous Phantoms using Analytical Anisotropic Algorithm and Acuros-XB Algorithm for Different Photon Energies". سامانه مدیریت نشریات علمی, 12, 3, 1401, 237-244. doi: 10.31661/jbpe.v0i0.2012-1246
Gangwar, Vinod Kumar, Gurjar, Om Prakash, Kumar, Lalit, Agarwal, Avinash, Mishra, Vineet Kumar, Prasad Mishra, Surendra, Pandey, Saket. (1401). 'Dosimetric Evaluation of the Treatment Plan on Indigenous Heterogeneous Phantoms using Analytical Anisotropic Algorithm and Acuros-XB Algorithm for Different Photon Energies', سامانه مدیریت نشریات علمی, 12(3), pp. 237-244. doi: 10.31661/jbpe.v0i0.2012-1246
Gangwar, Vinod Kumar, Gurjar, Om Prakash, Kumar, Lalit, Agarwal, Avinash, Mishra, Vineet Kumar, Prasad Mishra, Surendra, Pandey, Saket. Dosimetric Evaluation of the Treatment Plan on Indigenous Heterogeneous Phantoms using Analytical Anisotropic Algorithm and Acuros-XB Algorithm for Different Photon Energies. سامانه مدیریت نشریات علمی, 1401; 12(3): 237-244. doi: 10.31661/jbpe.v0i0.2012-1246
Dosimetric Evaluation of the Treatment Plan on Indigenous Heterogeneous Phantoms using Analytical Anisotropic Algorithm and Acuros-XB Algorithm for Different Photon Energies
1PhD Candidate, Department of Physics, M.J.P. Rohilkhand University, Bareilly Uttar Pradesh, India
2PhD, Government Cancer Hospital, Mahatma Gandhi Memorial Medical College, Indore-452001, India
3PhD, Department of Applied Science & Humanities, Dr. A.P.J Abdul Kalam Technical University, Lucknow, India
4PhD, Medical Physics Division & Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Center, New Delhi, India
5PhD, Department of Physics Bareilly College Bareilly, Uttar Pradesh, India
6MSc, Apollomedics Hospital, Lucknow, India
7PhD, Department of Radiation Oncology, Ram Manohar Lohia Medical sciences Lucknow, India
8MD, Medical Physics Division & amp Department of Radiation Oncology, Apollomedics Hospital, Lucknow, India
چکیده
Background: Modern radiotherapy techniques are using advanced algorithms; however, phantoms used for quality assurance have homogeneous density; accordingly, the development of heterogeneous phantom mimicking human body sites is imperative to examine variation between planned and delivered doses. Objective: This study aimed to analyze the accuracy of planned dose by different algorithms using indigenously developed heterogeneous thoracic phantom (HT). Material and Methods: In this experimental study, computed tomography (CT) of HT was done, and the density of different parts was measured. The plan was generated on CT images of HCP with 6 and 15 Megavoltage (MV) photon beams using different treatment techniques, including three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Plans were delivered by the linear accelerator, and the dose was measured using the ion chamber (IC) placed in HT; planned and measured doses were compared. Results: Density patterns for different parts of the fabricated phantom, including rib, spine, scapula, lung, chest wall, and heart were 1.849, 1.976, 1.983, 0.173, 0.855, and 0.833 g/cc, respectively. Variation between planned and IC estimated doses with the tolerance (±5%) for all photon energies using different techniques. Acuros-XB (AXB) showed a slightly higher variation between computed and IC estimated doses using HCP compared to the analytical anisotropic algorithm (AAA). Conclusion: The indigenous heterogeneous phantom can accurately simulate the dosimetric scenario for different algorithms (AXB or AAA) and be also utilized for routine patient-specific QA.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492. PubMed PMID: 30207593.
Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys. 2001;51(4):880-914. doi: 10.1016/s0360-3016(01)01749-7. PubMed PMID: 11704310.
Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys. 2003;30(8):2089-115. doi: 10.1118/1.1591194. PubMed PMID: 12945975.
Kumar L, Yadav G, Kishore V, Bhushan M, Gairola M, Tripathi D. Validation of the RapidArc Delivery System Using a Volumetric Phantom as Per Task Group Report 119 of the American Association of Physicists in Medicine. J Med Phys. 2019;44(2):126-34. doi: 10.4103/jmp.JMP_118_18. PubMed PMID: 31359931. PubMed PMCID: PMC6580814.
Kumar L, Bhushan M, Kishore V, Yadav G, Gurjar OP. Dosimetric validation of Acuros® XB algorithm for RapidArc™ treatment technique: A post software upgrade analysis. J Cancer Res Ther. 2021;17(6):1491-8. doi: 10.4103/jcrt.JCRT_1154_19. PubMed PMID: 34916383.
Kumar R, Sharma SD, Amols HI, Mayya YS, Kushwaha HS. A Survey on the Quality Assurance Procedures Used in Intensity Modulated Radiation Therapy (IMRT) at Indian Hospitals. J Cancer Sci Ther. 2010;2(6):166-70. doi: 10.4172/1948-5956.1000045.
Nakamura M, Iramina H, Takamiya M, Ono T, Akimoto M, et al. A Survey Towards Standardization of Dosimetric Verification in Intensity-modulated Radiation Therapy. Igaku Butsuri. 2014;34(4):208-18. PubMed PMID: 26502492.
Pan Y, Yang R, Zhang S, Li J, Dai J, Wang J, Cai J. National survey of patient specific IMRT quality assurance in China. Radiat Oncol. 2019;14(1):69. doi: 10.1186/s13014-019-1273-5. PubMed PMID: 31023348. PubMed PMCID: PMC6482589.
Gagné IM, Zavgorodni S. Evaluation of the analytical anisotropic algorithm in an extreme water-lung interface phantom using Monte Carlo dose calculations. J Appl Clin Med Phys. 2006;8(1):33-46. doi: 10.1120/jacmp.v8i1.2324. PubMed PMID: 17592451. PubMed PMCID: PMC5722400.
Vassiliev ON, Wareing TA, McGhee J, Failla G, Salehpour MR, Mourtada F. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol. 2010;55(3):581-98. doi: 10.1088/0031-9155/55/3/002. PubMed PMID: 20057008.
Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat Oncol. 2011;6:82. doi: 10.1186/1748-717X-6-82. PubMed PMID: 21771317. PubMed PMCID: PMC3168411.
Kumar L, Kishore V, Bhushan M, Kumar P, Kumar G. Design and fabrication of a thoracic phantom for radiation dose verification in mega-voltage X-ray beam. Materials Today: Proceedings. 2022;49(8):3050-5. doi: 10.1016/j.matpr.2020.10.899.
Papanikolaou N, Battista JJ, Boyer AL, Kappas C, et al. Tissue Inhomogeneity Corrections for Megavoltage Photon Beams. AAPM Report No. 85, Task Group No 65 of the Radiation Therapy Committee of the American Association of Physicists in Medicine; Madison, United States: Medical Physics Publishing; 2004.
Kishore V, Kumar L, Bhushan M, Yadav G. A study for the development of a low density heterogeneous phantom for dose verification in high energy photon beam. Radiation Physics and Chemistry. 2020;170:108638. doi: 10.1016/j.radphyschem.2019.108638.
Kumar L, Kishore V, Bhushan M, Dewan A, Yadav G, Raman K, Kumar G, Ahmad I, Chufal KS, Gairola M. Impact of acuros XB algorithm in deep-inspiration breath-hold (DIBH) respiratory techniques used for the treatment of left breast cancer. Rep Pract Oncol Radiother. 2020;25(4):507-14. doi: 10.1016/j.rpor.2020.04.011. PubMed PMID: 32494224. PubMed PMCID: PMC7252204.
Delbaere A, Younes T, Vieillevigne L. On the conversion from dose-to-medium to dose-to-water in heterogeneous phantoms with Acuros XB and Monte Carlo calculations. Phys Med Biol. 2019;64(19):195016. doi: 10.1088/1361-6560/ab3df3. PubMed PMID: 31437832.
Kumar L, Yadav G, Kishore V, Bhushan M. Dosimetric validation of Acuros XB photon dose calculation algorithm on an indigenously fabricated low-density heterogeneous phantom. Radiation Protection and Environment. 2019;42(4):173-9. doi: 10.4103/rpe.RPE_17_19.
Wareing TA, McGhee JM, Morel JE, Pautz SD. Discontinuous finite element SN methods on three-dimensional unstructured grids. Nuclear Science and Engineering. 2001;138(3):256-68. doi: 10.13182/NSE138-256.
Lewis EE, Miller WF. Computational methods of neutron transport. New York: Wiley; 1984.
Gifford KA, Horton JL, Wareing TA, Failla G, Mourtada F. Comparison of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations. Phys Med Biol. 2006;51(9):2253-65. doi: 10.1088/0031-9155/51/9/010. PubMed PMID: 16625040.