- Baliyan V, Kordbacheh H, Parakh A, Kambadakone A. Response assessment in pancreatic ductal adenocarcinoma: role of imaging. Abdom Radiol. 2018;43(2):435-44. doi: 10.1007/s00261-017-1434-7. PubMed PMID: 29243123.
- Al-Hawary MM, Francis IR, Chari ST, et al. Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association. 2014;270(1):248-60. doi: 10.1148/radiol.13131184. PubMed PMID: 24354378.
- Choi MH, Lee YJ, Yoon SB, et al. MRI of pancreatic ductal adenocarcinoma: texture analysis of T2-weighted images for predicting long-term outcome. Abdom Radiol. 2019;44(1):122-30. doi: 10.1007/s00261-018-1681-2. PubMed PMID: 29980829.
- Eilaghi A, Baig S, Zhang Y, et al. CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma–a quantitative analysis. BMC Med Imaging. 2017;17(1):38. doi: 10.1186/s12880-017-0209-5. PubMed PMID: 28629416. PubMed PMCID: PMC5477257.
- Callery MP, Chang KJ, Fishman EK, et al. Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. Ann Surg Onco. 2009;16(7):1727-33. doi: 10.1245/s10434-009-0408-6. PubMed PMID: 19396496.
- Cassinotto C, Mouries A, Lafourcade JP, et al. Locally advanced pancreatic adenocarcinoma: reassessment of response with CT after neoadjuvant chemotherapy and radiation therapy. Radiology. 2014;273(1):108-16. doi: 10.1148/radiol.14132914. PubMed PMID: 24960211.
- Marconi S, Pugliese L, Del Chiaro M, et al. An innovative strategy for the identification and 3D reconstruction of pancreatic cancer from CT images. Updates Surg. 2016;68(3):273-8. doi: 10.1007/s13304-016-0394-8. PubMed PMID: 27605209.
- Boninsegna E, Negrelli R, Zamboni GA, et al. Assessing treatment response in pancreatic cancer: role of different imaging criteria. European Congress of Radiology-ECR; 2017.
- Ciaravino V, Cardobi N, De Robertis R, et al. CT texture analysis of ductal adenocarcinoma downstaged after chemotherapy. Anticancer Res. 2018;38(8):4889-95. doi: 10.21873/anticanres.12803. PubMed PMID: 30061265.
- Goh V, Ganeshan B, Nathan P, et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. 2011;261(1):165-71. doi: 10.1148/radiol.11110264. PubMed PMID: 21813743.
- Ganeshan B, Goh V, Mandeville HC, et al. Non–small cell lung cancer: histopathologic correlates for texture parameters at CT. 2013;266(1):326-36. doi: 10.1148/radiol.12112428. PubMed PMID: 23169792.
- Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. 2013;266(1):177-84. doi: 10.1148/radiol.12120254. PubMed PMID: 23151829.
- Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K. Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol. 2012;67(2):157-64. doi: 10.1016/j.crad.2011.08.012. PubMed PMID: 21943720.
- Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics. 1973;SMC-3(6):610-21. doi: 10.1109/TSMC.1973.4309314.
- Albregtsen F. Statistical texture measures computed from gray level run-length matrices. University of Oslo; 1995.
- Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on pattern analysis and machine intelligence. 2002;24(7):971-87. doi: 10.1109/TPAMI.2002.1017623.
- Laws KI. Textured image segmentation. University of Southern California Los Angeles Image Processing INST; 1980.
- Arivazhagan S, Ganesan L. Texture classification using wavelet transform. Pattern Recognition Letters. 2003;24(9-10):1513-21. doi: 10.1016/S0167-8655(02)00390-2.
- Ahmadian A, Mostafa A. An efficient texture classification algorithm using Gabor wavelet. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439); Cancun, Mexico: IEEE; 2003. p. 930-3. doi: 10.1109/IEMBS.2003.1279918.
- Kingsbury N. Complex wavelets for shift invariant analysis and filtering of signals. Applied and Computational Harmonic Analysis. 2001;10(3):234-53. doi: 10.1006/acha.2000.0343.
- Yang P, Yang G. Feature extraction using dual-tree complex wavelet transform and gray level co-occurrence matrix. Neurocomputing. 2016;197:212-20. doi: 10.1016/j.neucom.2016.02.061.
- Yang P, Zhang F, Yang G. Fusing DTCWT and LBP based features for rotation, illumination and scale invariant texture classification. IEEE Access. 2018;6:13336-49. doi: 10.1109/ACCESS.2018.2797072.
- Chakraborty J, Langdon-Embry L, Escalon JG, et al. Texture analysis for survival prediction of pancreatic ductal adenocarcinoma patients with neoadjuvant chemotherapy. SPIE Medical Imaging; 2016. p. 97841W. doi: 10.1117/12.2214470.
- Attiyeh MA, Chakraborty J, Doussot A, et al. Survival prediction in pancreatic ductal adenocarcinoma by quantitative computed tomography image analysis. Ann Surg Oncol. 2018;25(4):1034-42. doi: 10.1245/s10434-017-6323-3. PubMed PMID: 29380093. PubMed PMCID: PMC6752719.
- Chakraborty J, Langdon-Embry L, Cunanan KM, et al. Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients. PLoS One. 2017;12(12). doi: 10.1371/journal.pone.0188022. PubMed PMID: 29216209. PubMed PMCID: PMC5720792.
- Yun G, Kim YH, Lee YJ, Kim B, Hwang JH, Choi DJ. Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: association with survival outcomes after curative resection. Sci Rep. 2018;8(1):1-10. doi: 10.1038/s41598-018-25627-x. PubMed PMID: 29740111. PubMed PMCID: PMC5940761.
- Sandrasegaran K, Lin Y, Asare-Sawiri M, Taiyini T, Tann M. CT texture analysis of pancreatic cancer. Eur Radiol. 2019;29(3):1067-73. PubMed PMID: 30116961. doi: 10.1007/s00330-018-5662-1.
- Zhang MM, Yang H, Jin ZD, Yu JG, Cai ZY, Li ZS. Differential diagnosis of pancreatic cancer from normal tissue with digital imaging processing and pattern recognition based on a support vector machine of EUS images. Gastrointest Endosc. 2010;72(5):978-85. doi: 10.1016/j.gie.2010.06.042. PubMed PMID: 20855062.
- Zhu Z, Xia Y, Xie L, Fishman EK, Yuille AL. Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. International conference on medical image computing and computer-assisted intervention; Springer, Cham; 2019. p. 3-12.
- Chu LC, Park S, Kawamoto S, Fouladi DF, et al. Utility of CT radiomics features in differentiation of pancreatic ductal adenocarcinoma from normal pancreatic tissue. AJR Am J Roentgenol. 2019;213(2):349-57. doi: 10.2214/AJR.18.20901. PubMed PMID: 31012758.
- Nabizadeh N, Kubat M. Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Computers & Electrical Engineering. 2015;45:286-301. doi: 10.1016/j.compeleceng.2015.02.007.
- Zhu J, Rosset S, Tibshirani R, Hastie TJ. 1-norm support vector machines. Proceedings of the 16th International Conference on Neural Information Processing Systems; USA: MIT Press; 2003.
- Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision. 1997;22(1):61-79. doi: 10.1023/A:1007979827043.
- Zhu SC, Yuille A. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1996;18(9):884-900. doi: 10.1109/34.537343.
- Roth H, Oda M, Shimizu N, Oda H, Hayashi Y, Kitasaka T, et al. Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks. SPIE Medical Imaging, 2018; Houston, Texas, United States: SPIE; 2018. doi: 10.1117/12.2293499.
- Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL. A fixed-point model for pancreas segmentation in abdominal CT scans. International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer, Cham; 2017. p. 693-701.
- Zhu Z, Xia Y, Shen W, Fishman EK, Yuille AL. A 3d coarse-to-fine framework for automatic pancreas segmentation. ArXiv Preprint ArXiv:1712.00201.
- Farag A, Lu L, Roth HR, Liu J, Turkbey E, Summers RM. A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. IEEE Transactions on Image Processing. 2016;26(1):386-99. doi: 10.1109/TIP.2016.2624198.
|