Background: Qualitative and quantitative assessment of retinal perfusion using optical coherence tomography angiography (OCTA) has shown to be effective in the treatment and management of various retinal and optic nerve diseases. However, manual analyses of OCTA images to calculate metrics related to Foveal Avascular Zone (FAZ) morphology, and retinal vascular density and morphology are costly, time-consuming, subject to human error, and are exposed to both inter and intra operator variability. Objective: This study aimed to develop an open-source software framework for quantitative OCTA (QOCTA). Particularly, for analyzing OCTA images and measuring several indices describing microvascular morphology, vessel morphology, and FAZ morphology. Material and Methods: In this analytical study, we developed a toolbox or QOCTA using image processing algorithms provided in MATLAB. The software automatically determines FAZ and measures several parameters related to both size and shape of FAZ including area, perimeter, Feret’s diameter circularity, axial ratio, roundness, and solidity. The microvascular structure is derived from the processed image to estimate the vessel density (VD). To assess the reliability of the software, three independent operators measured the mentioned parameters for the eyes of 21 subjects. The consistency of the values was assessed using the intraclass correlation coefficient (ICC) index. Results: Excellent consistency was observed between the measurements completed for the superficial layer, ICC >0.9. For the deep layer, good reliability in the measurements was achieved, ICC >0.7. Conclusion: The developed software is reliable; hence, it can facilitate quantitative OCTA, further statistical comparison in cohort OCTA studies, and can assist with obtaining deeper insights into retinal variations in various populations. |
- Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography-principles and applications. Rep Prog Phys. 2003;66(2):239. doi: 10.1088/0034-4885/66/2/204.
- Ware HOT, Liu W, Hu J, Zhang H, Sun C. Methodology for Image-driven High-resolution Additive Manufacturing Using Discretized Data Set. Procedia CIRP. 2017;65:139-44. doi: 10.1016/j.procir.2017.04.008.
- De Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitr. 2015;1(1):5. doi: 10.1186/s40942-015-0005-8. PubMed PMID: 27847598. PubMed PMCID: PMC5066513.
- Matsunaga D, Yi J, Puliafito CA, Kashani AH. OCT angiography in healthy human subjects. Ophthalmic Surg Lasers Imaging Retina. 2014;45(6):510-5. doi: 10.3928/23258160-20141118-04. PubMed PMID: 25423629.
- Arend O, Wolf S, Jung F, Bertram B, Pöstgens H, Toonen H, et al. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol. 1991;75(9):514-8. doi: 10.1136/bjo.75.9.514. PubMed PMID: 1911651. PubMed PMCID: PMC1042463.
- Khansari MM, O’Neill W, Lim J, Mahnaz S. Method for quantitative assessment of retinal vessel tortuosity in optical coherence tomography angiography applied to sickle cell retinopathy. Biomed Opt Express. 2017;8(8):3796-806. doi: 10.1364/BOE.8.003796. PubMed PMID: 28856050. PubMed PMCID: PMC5560841.
- Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci. 2015;112(18):E2395-402. doi: 10.1073/pnas.1500185112. PubMed PMID: 25897021. PubMed PMCID: PMC4426471.
- Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254(6):1051-8. doi: 10.1007/s00417-015-3148-2. PubMed PMID: 26338819. PubMed PMCID: PMC4884570.
- Gadde SGK, Anegondi N, Bhanushali D, Chidambara L, Yadav NK, Khurana A, et al. Quantification of Vessel Density in Retinal Optical Coherence Tomography Angiography Images Using Local Fractal Dimension. Investig Opthalmology Vis Sci. 2016;57(1):246. doi: 10.1167/iovs.15-18287. PubMed PMID: 26803800.
- Wang Q, Chan S, Yang JY, You B, Wang YX, Jonas JB, et al. Vascular Density in Retina and Choriocapillaris as Measured by Optical Coherence Tomography Angiography. Am J Ophthalmol. 2016;168:95-109. doi: 10.1016/j.ajo.2016.05.005. PubMed PMID: 27183862.
- Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. 2015;35(11):2377-83. doi: 10.1097/IAE.0000000000000849. PubMed PMID: 26457396.
- Kim K, In You J, Park JR, Kim ES, Oh WY, Yu SY. Quantification of retinal microvascular parameters by severity of diabetic retinopathy using wide-field swept-source optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2021;259(8):2103-11. doi: 10.1007/s00417-021-05099-y. PubMed PMID: 33528650.
- GitHub [Internet]. Mghofrani/OCTA-Quantitative-Analysis: A MATLAB Framework for Quantitative Analysis of Retinal Angiography in Optical Coherence Tomography Images. 2020. Available from: https://github.com/mghofrani/OCTA-Quantitative-Analysis.
- Adhi M, Bonini Filho MA, Louzada RN, Kuehlewein L, Talisa E, Baumal CR, et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography. I Invest Ophthalmol Vis Sci. 2016;57(9):OCT486-94. doi: 10.1167/iovs.15-18907. PubMed PMID: 27442342.
- Tang FY, Ng DS, Lam A, Luk F, Wong R, Chan C, et al. Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes. Sci Rep. 2017;7(1):2575. doi: 10.1038/s41598-017-02767-0. PubMed PMID: 28566760. PubMed PMCID: PMC5451475.
- Gonzalez RC, Woods RE. Digital Image Processing (3rd Edition). USA: Prentice-Hall, Inc; 2006.
- Shiihara H, Terasaki H, Sonoda S, Kakiuchi N, Shinohara Y, Tomita M, et al. Objective evaluation of size and shape of superficial foveal avascular zone in normal subjects by optical coherence tomography angiography. Sci Rep. 2018;8(1):10143. doi: 10.1038/s41598-018-28530-7. PubMed PMID: 29973663. PubMed PMCID: PMC6031610.
- Tang W, Guo J, Liu W, Xu G. Quantitative analysis of retinal and choriocapillary vascular density of multiple evanescent white dot syndrome by optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2020;258(8):1697-707. doi: 10.1007/s00417-020-04687-8. PubMed PMID: 32350652.
- Lin G, Wang W, Kang C, Wang C. Multispectral MR images segmentation based on fuzzy knowledge and modified seeded region growing. Magn Reson Imaging. 2012;30(2):230-46. doi: 10.1016/j.mri.2011.09.008. PubMed PMID: 22133286.
- Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH. Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT362-370. doi: 10.1167/iovs.15-18904. PubMed PMID: 27409494. PubMed PMCID: PMC4968771.
- Chan TF, Sandberg BY, Vese LA. Active Contours without Edges for Vector-Valued Images. J Vis Commun Image Represent. 2000;11(2):130-41. doi: 10.1006/jvci.1999.0442.
- Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016;15(2):155-63. doi: 10.1016/j.jcm.2016.02.012. PubMed PMID: 27330520. PubMed PMCID: PMC4913118.
- Hagag AM, Gao SS, Jia Y, Huang D. Optical coherence tomography angiography: Technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol. 2017;7(3):115-29. doi: 10.4103/tjo.tjo_31_17. PubMed PMID: 28966909. PubMed PMCID: PMC5617355.
|