تعداد نشریات | 20 |
تعداد شمارهها | 1,149 |
تعداد مقالات | 10,519 |
تعداد مشاهده مقاله | 45,426,711 |
تعداد دریافت فایل اصل مقاله | 11,296,851 |
Nano Composite Fe-Co-V /Zeolite as a Nano Carrier for Folic Acid Drug Controlled Release | ||
Trends in Pharmaceutical Sciences | ||
دوره 7، شماره 4، اسفند 2021، صفحه 289-298 اصل مقاله (797.85 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30476/tips.2021.92324.1110 | ||
نویسندگان | ||
Shima Zangeneh Yousef Abadi1؛ Mohammad Kazem Mohammadi* 2؛ Haman Tavakkoli1 | ||
1Nano Composite Fe-Co-V /Zeolite as a Nano Carrier for Folic Acid Drug Controlled Release | ||
2Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran. | ||
چکیده | ||
large reserves of zeolites has been one of the comparative advantages of the country in this field and provides economic justification for its use in a variety of applications, including medical and pharmaceutical fields such as artificial kidney manufacturing, wound dressing, controlled drug release, and bone tissue engineering. In order to protect the drug folic acid (folate) in digestive system acidic environments, zeolite nano carrier (Fe-Co-V/zeolite) was used. After dissolving in ethanol, a certain amount of this drug was placed on zeolite and extracted at different time periods. The release rate of folic acid in similar conditions of stomach and intestine was measured by placing samples of zeolite containing this compound in aqueous solution with an acidic pH of 5.4 and 8.9. The release rate in acidic medium was 17% more than the release of drug in alkaline medium. SEM test was performed to measure the morphology of the pores and to measure the changes in the acidic grade to evaluate the buffering properties of this material. According to the findings of this study, folic acid is very unstable in acidic conditions and use of zeolite, significantly protected the folic acid. This can be attributed to the nature of automatic control of the acidic degree in the tolerable range of the drug (chemical protection). It is also important to note that the highly porous structure of zeolite can affect the initial absorption as well as the release of desired amount of vitamins in an area of chemical protection. | ||
کلیدواژهها | ||
: Folic acid؛ Nano carrier؛ Nano zeolite؛ Release؛ Stability | ||
مراجع | ||
1. Santos, H. A., Bimbo, L. M., Peltonen, L., Hirvonen, J., "Targeted Drug Delivery: Concepts and Design", Part VI, 1st edition, Springer International Publishing (CRS), Boston, USA, 571-613, (2015). 2. Kumar R, Lal S. Synthesis of Organic Nanoparticles and their Applications in Drug Delivery and Food Nanotechnology: A Review. J Nanomater Mol Nanotechnol. 2014;3:4. doi:10.4172/2324-8777.1000150 3. Wang R, Zhang Y, Lu D, Ge J, Liu Z, Zare RN. Functional protein-organic/inorganic hybrid nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Jul-Aug;5(4):320-8. doi: 10.1002/wnan.1210. Epub 2013 Jan 29. PMID: 23362008. 4. Dizaj SM, Jafari S, Khosroushahi AY. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Lett. 2014 May 21;9(1):252. doi: 10.1186/1556-276X-9-252. PMID: 24936161; PMCID: PMC4046008. 5. Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol. 2013 Mar 25;3:13. doi: 10.3389/fcimb.2013.00013. PMID: 23532930; PMCID: PMC3607064. 6. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001 Jan 29;70(1-2):1-20. doi: 10.1016/s0168-3659(00)00339-4. PMID: 11166403. 7. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002 Sep 13;54(5):631-51. doi: 10.1016/s0169-409x(02)00044-3. PMID: 12204596. 8. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994 Jul 1;54(13):3352-6. PMID: 8012948. 9. Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1995;17:31-48. 10. Chen H, Langer R. Oral particulate delivery: status and future trends. Adv Drug Deliv Rev. 1998 Dec 1;34(2-3):339-350. doi: 10.1016/s0169-409x(98)00047-7. PMID: 10837685. 11. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res. 1997 Nov;14(11):1568-73. doi: 10.1023/a:1012126301290. PMID: 9434276. 12. Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005 May;26(15):2713-22. doi: 10.1016/j.biomaterials.2004.07.050. PMID: 15585275. 13. Jin C, Bai L, Wu H, Song W, Guo G, Dou K. Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharm Res. 2009 Jul;26(7):1776-84. doi: 10.1007/s11095-009-9889-z. Epub 2009 Apr 21. PMID: 19384463. 14. Bhardwaj V, Hariharan S, Bala I, Lamprecht A, Kumar N, Panchagnula R, et al. Pharmaceutical aspects of polymeric nanoparticles for oral drug delivery. J Biomed Nanotechnol. 2005;1:235-58. 15. Chai Y, Dai W, Wu G, Guan N, Li L. Confinement in a Zeolite and Zeolite Catalysis. Acc Chem Res. 2021 Jul 6;54(13):2894-2904. doi: 10.1021/acs.accounts.1c00274. Epub 2021 Jun 24. PMID: 34165959. 16. Ming DW, Mumpton FA. Zeolites in Soils. In Minerals in Soil Environments (eds J.B. Dixon and S.B. Weed). 1989; Dixon J. B. & Weed S.B. (1992). Wisconsin, USA.) pp 873-911. https://doi.org/10.2136/sssabookser1.2ed.c18 17. Tomlinson, AAG: (1998). Modern zeolites, structure and function in detergents and perto-chemicals. Trans techLtd UK. pp 1-16. 18. Clifton, RA. (1985). Natural and synthetic zeolites. International Circular 9140. Washington, D.C.1. pp 24-118. 19. Mumpton FA, Fishman PH. The application of natural zeolites in animal science and aquaculture. J Anim Sci. 1977;45:1188-1203. 20. Ames LL. TThe Cation Sieve Properties of Clinoptilolite. Amer Mineral. 1960;45 (5-6): 689-700. 21 Lam A, Rivera A, Rodrı́dguez-Fuentes G. Theoretical study of metronidazole adsorption on clinoptilolite. Microporous Mesoporous Mater. 2001;49(1-3): 157-162. 22. Horcajada P, Márquez-Alvarez C, Rámila A, Pérez-Pariente J, Vallet-Regí M. Controlled release of Ibuprofen from dealuminated faujasites. Solid State Sci. 2006;8(12): 1459-1465. 23. Wernert V, Schäf O, Ghobarkar H, Denoyel R. Adsorption properties of zeolites for artificial kidney applications. Microporous Mesoporous Mater. 2005;83(1-3): 101-113. 24. Rodríguez-Fuentes G, Denis AR, Barrios Álvarez MA, Colarte AI. Antacid drug based on purified natural clinoptilolite. Microporous Mesoporous Mater. 2006;94(1-3): 200-207. 25. Magdalena, T. Purification of natural zeolite-clinoptilolite for medical application-Extraction of lead. J Serbian Chem Soc. 2005;70. doi:10.2298/JSC0511335T. 26. Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington (DC): National Academies Press (US); 2000. PMID: 25077263. 27. Ersoy B, Çelik MS. Electrokinetic properties of clinoptilolite with mono- and multivalent electrolytes. Microporous Mesoporous Mater. 2002;55:305-312. 28. Azizian J, Mohammadi MK, Firuzi O, Mirza B, Miri R. Microwave-assisted solvent-free synthesis of Bis(dihydropyrimidinone)benzenes and evaluation of their cytotoxic activity. Chem Biol Drug Des. 2010 Apr;75(4):375-80. doi: 10.1111/j.1747-0285.2009.00937.x. Epub 2010 Jan 19. PMID: 20102370. 29. Miri R, Razzaghi-asl N, Mohammadi MK. QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent. J Mol Model. 2013 Feb;19(2):727-35. doi: 10.1007/s00894-012-1586-x. Epub 2012 Sep 29. PMID: 23053004. 30. Karimipour Z, Jalilzadeh Yengejeh R, Haghighatzadeh A, et al. UV-Induced Photodegradation of 2,4,6-Trichlorophenol Using Ag–Fe2O3–CeO2 Photocatalysts. J Inorg Organomet Polym. 2021;31:1143-1152. https://doi.org/10.1007/s10904-020-01859-1 31. Zangeneh A, Sabzalipour S, Takdatsan A, Jalilzadeh Yengejeh R, Abullatif Khafaie M. Ammonia removal form municipal wastewater by air stripping process: An experimental study. S Afr J Chem Eng. 2021;36:134-41. 32. Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9(12):9243-9257. 33. Pei X, Zhu Z, Gan Z, Chen J, Zhang X, Cheng X, et al. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep. 2020 Feb 17;10(1):2717. doi: 10.1038/s41598-020-59624-w. PMID: 32066812; PMCID: PMC7026168. 34. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res. 2008;1(3):203-212. doi: 10.1007/s12274-008-8021-8. PMID: 20216934; PMCID: PMC2834318. 35. de Sousa M, Visani de Luna LD, Fonseca L, Giorgio S, Luiz Alves O. Folic-Acid-Functionalized Graphene Oxide Nanocarrier: Synthetic Approaches, Characterization, Drug Delivery Study, and Antitumor Screening. ACS Applied Nano Material. 2018;1(2):922-932. | ||
آمار تعداد مشاهده مقاله: 31,262 تعداد دریافت فایل اصل مقاله: 989 |