1PhD, Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
2MSc, Department of Medical Physics, Isfahan University of Medical Sciences, Isfahan, Iran
3PhD Candidate, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
4MSc, Department of Physics, Hakim Sabzevari Universuty, Sabzevar, Iran
5MSc, Department of Allied Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
6MSc, Department of Physic, Imam Khomeini International University, Qazvin, Iran
7BSc, Department of Radiology Technology, Rofeideh Rehabilitation Hospital, Tehran, Iran
8MSc, Department of Radiology Technology, Faculty of Paramedical Sciences, Babol University of Medical Science, Babol, Iran
9MSc, Department of Nuclear Engineering, Faculty of Engineering, Science and Research of Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده
Background: Some parametric models are used to diagnose problems of lung segmentation more easily and effectively. Objective: The present study aims to detect lung diseases (nodules and tuberculosis) better using an active shape model (ASM) from chest radiographs. Material and Methods: In this analytical study, six grouping methods, including three primary methods such as physicians, Dice similarity, and correlation coefficients) and also three secondary methods using SVM (Support Vector Machine) were used to classify the chest radiographs regarding diaphragm congestion and heart reshaping. The most effective method, based on the evaluation of the results by a radiologist, was found and used as input data for segmenting the images by active shape model (ASM). Several segmentation parameters were evaluated to calculate the accuracy of segmentation. This work was conducted on JSRT (Japanese Society of Radiological Technology) database images and tuberculosis database images were used for validation. Results: The results indicated that the ASM can detect 94.12 ± 2.34 % and 94.38 ± 3.74 % (mean± standard deviation) of pulmonary nodules in left and right lungs, respectively, from the JRST radiology datasets. Furthermore, the ASM model detected 88.33 ± 6.72 % and 90.37 ± 5.48 % of tuberculosis in left and right lungs, respectively. Conclusion: The ASM segmentation method combined with pre-segmentation grouping can be used as a preliminary step to identify areas with tuberculosis or pulmonary nodules. In addition, this presented approach can be used to measure the size and dimensions of the heart in future studies.
Wu G, Zhang X, Luo S, Hu Q. Lung segmentation based on customized active shape model from digital radiography chest images. J Med Imaging Health Inform. 2015;5(2):184-91. doi: 10.1166/jmihi.2015.1382.
Duncan JS, Ayache N. Medical image analysis: Progress over two decades and the challenges ahead. IEEE Trans Pattern Anal Mach Intell. 2000;22(1):85-106. doi: 10.1109/34.824822.
Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, et al. The medical imaging interaction toolkit: challenges and advances. Int J Comput Assist Radiol Surg. 2013;8(4):607-20. doi: 10.1007/s11548-013-0840-8. PubMed PMID: 23588509.
Armato III SG, Sensakovic WF. Automated lung segmentation for thoracic CT: impact on computer-aided diagnosis1. Acad Radiol. 2004;11(9):1011-21. doi: 10.1016/j.acra.2004.06.005. PubMed PMID: 15350582.
Yepes-Calderon F, McComb JG. Manual Segmentation Errors in Medical Imaging Proposing a Reliable Gold Standard. International Conference on Applied Informatics; Cham: Springer; 2019. p. 230-41. doi: 10.1007/978-3-030-32475-9_17.
Akhil M, Aishwarya R, Lal V, Mahesh S. Comparison and evaluation of segmentation techniques for brain mri using Gold Standard. Indian J Sci Technol. 2016;9(46):1-5. doi: 10.17485/ijst/2016/v9i46/106495.
Van Ginneken B, Stegmann MB, Loog M. Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal. 2006;10(1):19-40. doi: 10.1016/j.media.2005.02.002. PubMed PMID: 15919232.
Cootes TF, Edwards GJ, Taylor CJ. Comparing active shape models with active appearance models. Bmvc. 1999:173-82. doi: 10.5244/C.13.18.
De Bruijne M, Van Ginneken B, Viergever MA, Niessen WJ. Adapting active shape models for 3D segmentation of tubular structures in medical images. Inf Process Med Imaging. 2003;18:136-47. doi: 10.1007/978-3-540-45087-0_12. PubMed PMID: 15344453.
Heimann T, Wolf I, Williams T, Meinzer HP. 3D active shape models using gradient descent optimization of description length. Inf Process Med Imaging. 2005;19:566-77. doi: 10.1007/11505730_47. PubMed PMID: 17354726.
De Nunzio G, Tommasi E, Agrusti A, Cataldo R, et al. Automatic lung segmentation in CT images with accurate handling of the hilar region. J Digit Imaging. 2011;24(1):11-27. doi: 10.1007/s10278-009-9229-1. PubMed PMID: 19826872. PubMed PMCID: PMC3046791.
Zhou S, Cheng Y, Tamura S. Automated lung segmentation and smoothing techniques for inclusion of juxtapleural nodules and pulmonary vessels on chest CT images. Biomed Signal Process Control. 2014;13:62-70. doi: 10.1016/j.bspc.2014.03.010.
Shi Y, Shen D. Hierarchical shape statistical model for segmentation of lung fields in chest radiographs. Med Image Comput Comput Assist Interv. 2008;11(Pt 1):417-24. doi: 10.1007/978-3-540-85988-8_50. PubMed PMID: 18979774.
Chen S, Suzuki K, MacMahon H. Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification. Med Phys. 2011;38(4):1844-58. doi: 10.1118/1.3561504. PubMed PMID: 21626918. PubMed PMCID: PMC3069992.
Van Ginneken B, Frangi AF, Staal JJ, Ter Haar Romeny BM, Viergever MA. Active shape model segmentation with optimal features. IEEE Trans Med Imaging. 2002;21(8):924-33. doi: 10.1109/TMI.2002.803121. PubMed PMID: 12472265.
Schilham AM, Van Ginneken B, Loog M. A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Med Image Anal. 2006;10(2):247-58. doi: 10.1016/j.media.2005.09.003. PubMed PMID: 16293441.
Wei J, Hagihara Y, Shimizu A, Kobatake H. Optimal image feature set for detecting lung nodules on chest X-ray images. CARS 2002 Computer Assisted Radiology and Surgery; Berlin, Heidelberg: Springer; 2002. p. 706-11. doi: 10.1007/978-3-642-56168-9_118.
Coppini G, Diciotti S, Falchini M, Villari N, Valli G. Neural networks for computer-aided diagnosis: detection of lung nodules in chest radiograms. IEEE Trans Inf Technol Biomed. 2003;7(4):344-57. doi: 10.1109/titb.2003.821313. PubMed PMID: 15000360.
Shiraishi J, Li Q, Suzuki K, Engelmann R, Doi K. Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: Localized search method based on anatomical classification. Med Phys. 2006;33(7):2642-53. doi: 10.1118/1.2208739. PubMed PMID: 16898468.
Freedman MT, Lo S-CB, Osicka T, Lure FYM, Xu X-W, Lin J, et al. Computer-aided detection of lung cancer on chest radiographs: effect of machine CAD false-positive locations on radiologists’ behavior. Proceedings of the SPIE. 2002:1311-19. doi: 10.1117/12.467092.
Shi Y, Qi F, Xue Z, Chen L, Ito K, Matsuo H, et al. Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE Trans Med Imaging. 2008;27(4):481-94. doi: 10.1109/TMI.2007.908130. PubMed PMID: 18390345.
Soleymanpour E, Pourreza HR. Fully automatic lung segmentation and rib suppression methods to improve nodule detection in chest radiographs. J Med Signals Sens. 2011;1(3):191-9. doi: 10.4103/2228-7477.95412. PubMed PMID: 22606675. PubMed PMCID: PMC3347229.