Background: Positron Emission Mammography (PEM) is a nuclear medicine imaging tool, playing a significant role in the diagnosis of patients with breast cancer. These days, many research has been done in order to improve the performance of this system. Objective: This study aims to propose a new method for optimizing the size of axial Field of View (FOV) in PEMs and improving the performance of the systems. Material and Methods: In this analytical study, a conventional Inveon PET is simulated using GATE in order to validate the simulation. For this simulation, the mean relative difference is 2.91%, showing the precision and correction of simulation and consequently it is benchmarked. In the next step, for design of the new optimized detector, several validated simulations are performed in order to find the best geometry. Results: The best result is obtained with the axial FOV of 101.7 mm. It has 1.6×1.6×15 mm3 lutetium yttrium orthosilicate (LYSO) crystals. The detector consists of 6 block rings with 30 detector blocks in each ring. In this paper, the performance of the scanner is improved and the geometry is optimized. Sensitivity and scatter fraction of the designed scanner are 4.65% and 21.2%, respectively, also noise equivalent count rate (NECR) is 105.442 kcps. Conclusion: The results showed 1 up to 3% improvement in the sensitivity of this new detector compared with different PEMs. |
- Satoh Y, Motosugi U, Imai M, Onishi H. Comparison of dedicated breast positron emission tomography and whole-body positron emission tomography/computed tomography images: a common phantom study. Ann Nucl Med. 2020;34(2):119-27. doi: 10.1007/s12149-019-01422-0. PubMed PMID: 31768819.
- Berg E, Cherry SR. Innovations in instrumentation for positron emission tomography. Semin Nucl Med. 2018;48(4):311-31. doi: 10.1053/j.semnuclmed.2018.02.006. PubMed PMID: 29852942. PubMed PMCID: PMC5986096.
- Walrand S, Hesse M, Jamar F, Lhommel R. The origin and reduction of spurious extrahepatic counts observed in 90Y non-TOF PET imaging post radioembolization. Phys Med Biol. 2018;63(7):075016. doi: 10.1088/1361-6560/aab4e9. PubMed PMID: 29513273.
- Mikhaylova E, Tabacchini V, Borghi G, et al. Optimization of an ultralow-dose high-resolution pediatric PET scanner design based on monolithic scintillators with dual-sided digital SiPM readout: a simulation study. Phys Med Biol. 2017;62(21):8402. doi: 10.1088/1361-6560/aa8eb2. PubMed PMID: 28944759.
- Niknejad T, Setayeshi S, Tavernier S, et al. Validation of a highly integrated SiPM readout system with a TOF-PET demonstrator. Journal of Instrumentation. 2016;11(12):P12003. doi: 10.1088/1748-0221/11/12/P12003.
- Cherry SR, Sorenson JA, Phelps ME. Tomographic reconstruction in nuclear medicine. Physics in Nuclear Medicine. 2003;273-97. doi: 10.1016/B978-1-4160-5198-5.00016-2.
- Saha GB, Gobal B. Basic of PET imaging: physics, chemistry, and regulations. Springer International Publishing; 2016.
- Lecoq P, Varela J. Clear-PEM, a dedicated PET camera for mammography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2002;486(1-2):1-6. doi: 10.1016/S0168-9002(02)00666-6.
- MacDonald L, Edwards J, Lewellen T, Haseley D, Rogers J, Kinahan P. Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med. 2009;50(10):1666-75. doi: 10.2967/jnumed.109.064345. PubMed PMID: 19759118. PubMed PMCID: PMC2873041.
- Vroonland C. Dedicated mini PET system for breast screening: a technologist’s perspective. Eur J Nucl Med Mol Imaging. 2010;37(Suppl 2):S482-5.
- Li S, Zhang Q, Vuletic I, Xie Z, Yang K, Ren Q. Monte Carlo simulation of Ray-Scan 64 PET system and performance evaluation using GATE toolkit. Journal of Instrumentation. 2017;12(02):T02001. doi: 10.1088/1748-0221/12/02/T02001.
- Goertzen AL, Bao Q, Bergeron M, Blankemeyer E, Blinder S, et al. NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med. 2012;53(8):1300-9. doi: 10.2967/jnumed.111.099382. PubMed PMID: 22699999. PubMed PMCID: PMC4128012.
- Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med. 2009;50(3):401-8. doi: 10.2967/jnumed.108.056374. PubMed PMID:19223424. PubMed PMCID: PMC2803022.
- Santin G, Strul D, Lazaro D, Simon L, Krieguer M, Martins MV, Breton V, Morel C. GATE: a Geant4-based simulation platform for PET integrating movement and time management. IEEE Transactions on Nuclear Science. 2003;50(5):1516-21. doi: 10.1109/TNS.2003.817974.
- Santin G, Staelens S, Taschereau R, Descourt P, et al. Evolution of the GATE project: new results and developments. Nucl Phys Proc Suppl. 2007;172:101-3. doi: 10.1016/j.nuclphysbps.2007.07.008.
- Wiggins C, Santos R, Rugglesb A. A feature point identification method for positron emission particle tracking with multiple tracers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2017;843:22-8. doi: 10.1016/j.nima.2016.10.057.
- Bailey DL, Maisey MN, Townsend DW, Valk PE. Positron emission tomography. London: Springer; 2005. doi: 10.1007/b136169.
- Kowalski P, Wiślicki W, Raczyński L, et al. Scatter Fraction of the J-PET Tomography Scanner. Acta Physica Polonica. 2016;47(2):549. doi: 10.5506/APhysPolB.47.549.
- Balcerzyk M, Kontaxakis G, Delgado M, et al. Initial performance evaluation of a high resolution Albira small animal positron emission tomography scanner with monolithic crystals and depth-of-interaction encoding from a user’s perspective. Measurement Science and Technology. 2009;20(10):104011. doi: 10.1088/0957-0233/20/10/104011.
|