تعداد نشریات | 20 |
تعداد شمارهها | 1,149 |
تعداد مقالات | 10,519 |
تعداد مشاهده مقاله | 45,427,767 |
تعداد دریافت فایل اصل مقاله | 11,296,960 |
The Effect of Gold Nano Particles with Different Sizes on Streptococcus Species | ||
Journal of Dentistry | ||
مقاله 2، دوره 22، شماره 4 - شماره پیاپی 73، اسفند 2021، صفحه 235-242 اصل مقاله (532.04 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30476/dentjods.2021.85219.1119 | ||
نویسندگان | ||
Fatemeh Lavaee1؛ Zahra Ranjbar2؛ Farzan Modaresi* 3؛ Fatemeh Keshavarz4 | ||
1Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran. | ||
2Dept. Oral and Maxillofacial Disease, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran. | ||
3Dept. of Bacteriology and Virology, Jahrom Medical School, Jahrom University of Medical Sciences, Jahrom, Iran. | ||
4Undergraduate Students, Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran | ||
چکیده | ||
Statement of the Problem: Streptococcus mutans, Streptococcus sanguinis, and Streptococcus salivarius are most common etiologic bacteria for dental caries. Different sizes of gold nanoparticles may have different antibacterial effects on these species. Purpose: This study aimed to compare the antibacterial effect of chlorhexidine and three sizes of gold nano particles (25, 60, 90nm) against clinical and standard strains of Streptococcus mutans, Streptococcus sanguinis, and Streptococcus salivarius. Materials and Method: In this cross-sectional study, the specimens were collected from 75 children aged 3-5 years old. Antibacterial effect of chlorhexidine and three sizes of gold nano particles (25, 60, 90nm) were investigated by evaluating the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against three bacterial strains. Results: The MIC and MBC of gold nanoparticles with different sizes against Streptococcus mutans, Streptococcus sanguinis, and Streptococcus salivarius were statistically different. The MIC and MBC of smaller gold nano particles (25nm) were significantly lower (p <0.001) than larger ones. Patient-derived bacteria had significantly higher values of MIC and MBC in comparison to standard species (p <0.001). Conclusion: The results of this study confirmed the significant size-dependency of gold nano particles for antibacterial activity. As the size of gold nano particles decrease, the antibacterial properties enhance. | ||
کلیدواژهها | ||
Nanoparticles؛ Streptococcus mutans؛ Streptococcus sanguinis؛ Streptococcus salivarius | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] Abiodun-Solanke IMF, Ajayi DM, Arigbede AO. Nanotechnology and its Application in Dentistry. Ann Med Health Sci Res. 2014; 4(Suppl 3): S171-S7.
[2] Ozak ST, Ozkan P. Nanotechnology and dentistry. European J Gen Dent. 2013; 7: 145-151.
[3] MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces. 2011; 85: 360-365.
[4] Annamalai A, Christina VLP, Sudha D, Kalpana M, Lakshmi PTV. Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf B Biointerfaces. 2013; 108: 60-65.
[5] Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Guti-érrez F, Martínez AE, Guillén AdJP, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide and gold. Nanomedicine 2008; 4: 237-240.
[6] Ghapanchi J, Moattari A, Lavaee F, Shakib M. The antibacterial effect of four mouthwashes against Streptococcus mutans and Escherichia coli. JPMA. 2015;65.
[7] Lavaee F, Faez K, Hadi N, Modaresi F. Antimicrobial and antibiofilm activity of silver, titanium dioxide and iron nano particles. Am J Dent. 2016; 29: 315-320.
[8] Ghanavati*Behbahan F, Salari M, Mousavi SR, Rezaei R. Antimicrobial activities of Gold nanoparticles against Sa-lmonella typhimurium. Advanced Herb Med. 2016; 2: 26-30.
[9] Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008; 10: 1343-1348.
[10] Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guerin. J Nanobiotechnology. 2012; 10: 19.
[11] Wenzel A. Digital radiography and caries diagnosis. Dentomaxillofac Radiol. 1998; 27: 3-11.
[12] Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J, Hardin JM. Natural History of Streptococcus sanguinis in the Oral Cavity of Infants: Evidence for a Discrete Window of Infectivity. Infection immunity. 2000; 68: 4018-4023.
[13] Loesche WJ, Rowan J, Straffon LH, Loos PJ. Association of Streptococcus mutants with human dental decay. Infection Immunity. 1975; 11: 1252-1260.
[14] Marsh P, Featherstone A, McKee A, Hallsworth A, Robinson C, Weatherell J, et al. A microbiological study of early caries of approximal surfaces in schoolchildren. J Dent Res. 1989; 68: 1151-1154.
[15] Jordan HV, Laraway R, Snirch R, Marmel M. A simplified diagnostic system for cultural detection and enumeration of Streptococcus mutans. J Dent Res. 1987; 66: 57-61.
[16] Garnier F, Gerbaud G, Courvalin P, Galimand M. Identification of clinically relevant viridans group streptococci to the species level by PCR. J Clin Microbiol. 1997; 35: 2337-2341.
[17] Najjar MB, Kashtanov D, Chikindas ML. Natural antimicrobials ε-poly-l-lysine and Nisin A for control of oral microflora. Probiotics Antimicrobial Proteins. 2009; 1: 143.
[18] Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances. 2014; 4: 3974-3983.
[19] Espinosa-Cristóbal L, Martínez-Castañón G, Martínez-Martínez R, Loyola-Rodriguez J, Patino-Marin N, Reyes-Macias J, et al. Antibacterial effect of silver nanoparticles against Streptococcus mutans. Mater Lett. 2009; 63: 2603-2606.
[20] Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Solid State Sci. 2001; 3: 643-646.
[21] Pal S, Tak YK, Song JM. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl Environ Microbiol. 2007; 73: 1712-1720.
[22] Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011; 27: 4020-4028.
[23] Nagarajan P, Rajagopalan V. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater. 2008; 9: 035004.
[24] Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances. 2009; 27: 76-83.
[25] Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006; 5: 916-924.
[26] Holt KB, Bard AJ. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry. 2005; 44: 13214-13223.
[27] Eby DM, Luckarift HR, Johnson GR. Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces. 2009; 1: 1553-1560.
[28] Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem. 2004; 15: 897-900.
[29] Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, et al. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules. 2007; 8: 1246-1254.
[30] Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 2009; 29: 69-78.
[31] Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, et al. Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano. 2008; 2: 2121-234.
[32] Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res. 2007; 9: 479-489.
[33] Brayner R, FerrariIliou R, Brivois N, Djediat S, Benedetti MF, Fievet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006; 6: 866-870.
[34] Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E. Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr. 2003; 133: 4077-4082.
[35] Lu Z, Rong K, Li J, Yang H, Chen R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med. 2013; 24: 1465-14671.
[36] Thiel J, Pakstis L, Buzby S, Raffi M, Ni C, Pochan D, et al. Antibacterial properties of silver-doped Titania. Small. 2007; 3: 799-803. | ||
آمار تعداد مشاهده مقاله: 2,368 تعداد دریافت فایل اصل مقاله: 1,624 |