- Van Der Kooy K, Van Hout H, Marwijk H, Marten H, Stehouwer C, Beekman A. Depression and the risk for cardiovascular diseases: systematic review and meta analysis. Int J Geriatr Psychiatry. 2007;22(7):613-26. doi: 10.1002/gps.1723. PubMed PMID: 17236251.
- Ahmadi N, Nabavi V, Hajsadeghi F, Flores F, French WJ, Mao SS, et al. Mortality incidence of patients with non-obstructive coronary artery disease diagnosed by computed tomography angiography. Am J Cardiol. 2011;107(1):10-6. doi: 10.1016/j.amjcard.2010.08.034. PubMed PMID: 21146679.
- Bergvik S, Sørlie T, Wynn R. Approach and avoidance coping and regulatory focus in patients having coronary artery bypass graft surgery. J Health Psychol. 2010;15(6):915-24. doi: 10.1177/1359105309359542. PubMed PMID: 20453051.
- Capodanno D, Capranzano P, Di Salvo ME, Caggegi A, Tomasello D, Cincotta G, et al. Usefulness of SYNTAX score to select patients with left main coronary artery disease to be treated with coronary artery bypass graft. JACC Cardiovasc Interv. 2009;2(8):731-8. doi: 10.1016/j.jcin.2009.06.003. PubMed PMID: 19695541.
- SSM Health. What should I expect during open heart surgery? 2019 [Cited 2019 May 11]. Available from: https://www.medicalnewstoday.com/articles/312888.php.
- Sax H, Bloemberg G, Hasse B, Sommerstein R, Kohler P, Achermann Y, et al. Prolonged outbreak of Mycobacterium chimaera infection after open-chest heart surgery. Clinical Infectious Diseases. 2015;61(1):67-75. doi: 10.1093/cid/civ198. PubMed PMID: 25761866.
- Smith AE, Nugent CD, McClean SI. Evaluation of inherent performance of intelligent medical decision support systems: utilising neural networks as an example. Artif Intell Med. 2003;27(1):1-27. doi: 10.1016/s0933-3657(02)00088-x. PubMed PMID: 12473389.
- Banbury MK. Experience in prevention of sternal wound infections in nasal carriers of Staphylococcus aureus. 2003;134(5):S18-22. doi: 10.1016/s0039-6060(03)00389-1. PubMed PMID: 14647029.
- Kogan A, Ram E, Levin S, Fisman EZ, Tenenbaum A, Raanani E, et al. Impact of type 2 diabetes mellitus on short- and long-term mortality after coronary artery bypass surgery. Cardiovasc Diabetol. 2018;17(1):151. doi: 10.1186/s12933-018-0796-7. PubMed PMID: 30497472. PubMed PMCID: PMC6264047.
- Koochemeshki V, Salmanzadeh HR, Sayyadi H, Amestejani M, Ardabili SS. The effect of diabetes mellitus on short term mortality and morbidity after isolated coronary artery bypass grafting surgery. Int J Cardiovasc Res. 2013;7(2):41. PubMed PMID: 24757619. PubMed PMCID: PMC3987431.
- Kowalewski M, Pawliszak W, Zaborowska K, Navarese EP, Szwed KA, Kowalkowska ME, et al. Gentamicin-collagen sponge reduces the risk of sternal wound infections after heart surgery: meta-analysis. J Thorac Cardiovasc Surg 2015;149(6):1631-40. doi: 10.1016/j.jtcvs.2015.01.034. PubMed PMID: 25703409.
- Ross JJ, Denai MA, Mahfouf M. A hybrid hierarchical decision support system for cardiac surgical intensive care patients. Part II. Clinical implementation and evaluation. Artif Intell Med. 2009;45(1):53-62. doi: 10.1016/j.artmed.2008.11.010. PubMed PMID: 19112011.
- Zaleski J. Medical Device Data and Modeling for Clinical Decision Making. Boston: Artech House; 2011.
- Ghaderzadeh M. Clinical decision support system for early detection of prostate cancer from benign hyperplasia of prostate. Stud Health Technol Inform. 2013;192:928. PubMed PMID: 23920702.
- Sim LLW, Ban KHK, Tan TW, Sethi SK, Loh TP. Development of a clinical decision support system for diabetes care: A pilot study. PloS One. 2017;12(2). doi: 10.1371/journal.pone.0173021. PubMed PMID: 28235017. PubMed PMCID: PMC5325565.
- Haynes RB, Wilczynski NL, Team CCDSSSR. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: methods of a decision-maker-researcher partnership systematic review. Implement Sci. 2010;5(1):12. doi: 10.1186/1748-5908-5-12. PubMed PMID: 20181104. PubMed PMCID: PMC2829489.
- Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ (Clinical Research ed). 2005;330(7494):765. doi: 10.1136/bmj.38398.500764.8F. PubMed PMID: 15767266. PubMed PMCID: PMC555881.
- Chan SS, Francavilla ML, Iyer RS, Rigsby CK, Kurth D, Karmazyn BK. Clinical decision support: the role of ACR Appropriateness Criteria. Pediatr Radiol. 2019;49(4):479-85. doi: 10.1007/s00247-018-4298-2. PubMed PMID: 30923879.
- Aslani N, Ahmadi M, Samadbeik M. A systematic review of the attributes of electronic personal health Records for Patients with multiple sclerosis. Health Technol (Berl). 2020;10(3):587-99. doi: 0.1007/s12553-019-00387-4.
- Hussain M, Khattak AM, Khan WA, Fatima I, Amin MB, Pervez Z, et al. Cloud-based Smart CDSS for chronic diseases. Health Technol (Berl). 2013;3(2):153-75. doi:10.1007/S12553-013-0051-X.
- Hampe N, Wolterink JM, Van Velzen SG, Leiner T, Išgum I. Machine Learning for Assessment of Coronary Artery Disease in Cardiac CT: A Survey. Front Cardiovasc Med. 2019;6:172. doi: 10.3389/fcvm.2019.00172. PubMed PMID: 32039237. PubMed PMCID: PMC6988816.
- Martin-Isla C, Campello VM, Izquierdo C, Raisi-Estabragh Z, Baeßler B, Petersen SE, et al. Image-Based Cardiac Diagnosis With Machine Learning: A Review. Front Cardiovasc Med. 2020;7:1. doi:10.3389/fcvm.2020.00001.
- Pimentel A, Gamboa H, Almeida IM, Matos P, Ribeiro RT, Raposo J. Coronary heart disease prognosis using machine-learning techniques on patients with type 2 Diabetes Mellitus. IGI Global; 2018. p. 198-217. doi: 10.4018/978-1-5225-7122-3.ch011.
- Gatti G, Rochon M, Raja S, Luzzati R, Dreas L, Pappalardo A. Predictive models of surgical site infections after coronary surgery: insights from a validation study on 7090 consecutive patients. J Hosp Infect. 2019;102(3):277-86. doi: 10.1016/j.jhin.2019.01.009. PubMed PMID: 30653998.
- Zarkogianni K, Vazeou A, Mougiakakou SG, Prountzou A, Nikita KS. An insulin infusion advisory system based on autotuning nonlinear model-predictive control. IEEE Trans Biomed Eng. 2011;58(9):2467-77. doi: 10.1109/TBME.2011.2157823. PubMed PMID: 21622071.
- Mirsharif M, Rouhani S. Data Mining Approach based on Neural Network and Decision Tree Methods for the Early Diagnosis of Risk of Gestational Diabetes Mellitus. Journal of Health and Biomedical Informatics. 2017;4(1):59-68.
- Patel JL, Goyal RK. Applications of artificial neural networks in medical science. Curr Clin Pharmacol. 2007;2(3):217-26. doi: 10.2174/157488407781668811. PubMed PMID: 18690868.
- Ghumbre SU, Ghatol AA. An intelligent system for hepatitis b disease diagnosis. Int J Comput Appl. 2010;32(4):455-60. doi: 10.2316/Journal.202.2010.4.202-2874.
- Sistani S, Norouzi S, Hassibian MR, Tara M, Tabesh H, Hasibian S, et al. The Discovery of Major Heart Risk Factors among Young Patients with Ischemic Heart Disease Using K-Means Techniques. Int Cardiovasc Res J. 2019;13(3):85-90.
- Contreras I, Vehi J. Artificial intelligence for diabetes management and decision support: literature review. J Med Internet Res. 2018;20(5):e10775. doi: 10.2196/10775. PubMed PMID: 29848472. PubMed PMCID: PMC6000484.
- Esmaeily H, Tayefi M, Ghayour-Mobarhan M, Amirabadizadeh A. Comparing three data mining algorithms for identifying the associated risk factors of type 2 diabetes. Iran Biomed J. 2018;22(5):303. doi: 10.29252/ibj.22.5.303. PubMed PMID: 29374085. PubMed PMCID: PMC6058191.
- Adavi M, Salehi M, Roudbari M. Artificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes. Med J Islam Repub Iran. 2016;30:312. PubMed PMID: 27390682. PMCID: PMC4898876.
- Fisher AC, Lake SP, Cunningham IP, Chandna A. Web-StrabNet: a web-based expert system for the differential diagnosis of vertical strabismus (squint). Comput Math Methods Med. 2010;11(1):89-97. doi: 10.1080/17486700903010157.
- Shahmoradi L, Safdari R, Mirhosseini MM, Arji G, Jannat B, Abdar M. Predicting Risk of Acute Appendicitis: A Comparison of Artificial Neural Network and Logistic Regression Models. Acta Med Iran. 2018:784-95.
|