- Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s & Dementia. 2007;3(3):186-91. doi: 10.1016/j.jalz.2007.04.381. PubMed PMID: 19595937.
- Murphy MP, LeVine III H. Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis. 2010;19(1):311-23. doi: 10.3233/JAD-2010-1221. PubMed PMID: 20061647. PubMed PMCID: PMC2813509.
- Perani D. FDG-PET and amyloid-PET imaging: the diverging paths. Curr Opin Neurol. 2014;27(4):405-13. doi: 10.1097/WCO.0000000000000109. PubMed PMID: 24927239.
- Zimmer ER, Leuzy A, Benedet AL, et al. Tracking neuroinflammation in Alzheimer’s disease: the role of positron emission tomography imaging. J Neuroinflammation. 2014;11:120. doi: 10.1186/1742-2094-11-120. PubMed PMID: 25005532. PubMed PMCID: PMC4099095.
- Negahdary M, Behjati-Ardakani M, Sattarahmady N, et al. Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-Applied to early detection of myocardial infarction. Sensors and Actuators B: Chemical. 2017;252:62-71. doi: 10.1016/j.snb.2017.05.149.
- Rahi A, Sattarahmady N, Heli H. An ultrasensitive electrochemical genosensor for Brucella based on palladium nanoparticles. Anal Biochem. 2016;510:11-17. doi: 10.1016/j.ab.2016.07.012. PubMed PMID: 27423961.
- Tondro GH, Vais RD, Sattarahmady N. An optical genosensor for Enterococcus faecalis using conjugated gold nanoparticles-rRNA oligonucleotide. Sensors and Actuators B: Chemical. 2018;263:36-42. doi: 10.1016/j.snb.2018.02.097.
- Sattarahmady N, Heli H. A non-enzymatic amperometric sensor for glucose based on cobalt oxide nanoparticles. Journal of Experimental Nanoscience. 2012;7(5):529-46. doi: 10.1080/17458080.2010.539275.
- Heli H, Majdi S, Sattarahmady N, Parsaei A. Electrocatalytic oxidation and sensitive detection of deferoxamine on nanoparticles of Fe 2 O 3@ NaCo [Fe (CN) 6]-modified paste electrode. Journal of Solid State Electrochemistry. 2010;14(9):1637-47. doi: 10.1007/s10008-010-1002-3.
- Korecká L, Vytřas K, Bílková Z. Immunosensors in Early Cancer Diagnostics: From Individual to Multiple Biomarker Assays. Curr Med Chem. 2018;25(33):3973-87. doi: 10.2174/0929867324666171121101245. PubMed PMID: 29165064.
- Heli H, Majdi S, Sattarahmady N. Fe2O3 core–NaCo [Fe (CN) 6] shell nanoparticles—Synthesis and characterization. Materials Research Bulletin. 2010;45(7):850-8. doi: 10.1016/J.MATERRESBULL.2010.03.006.
- Sattarahmady N, Heli H, Vais RD. A flower-like nickel oxide nanostructure: Synthesis and application for choline sensing. Talanta. 2014;119:207-13. doi: 10.1016/j.talanta.2013.11.002. PubMed PMID: 24401406.
- Rahi A, Karimian K, Heli H. Nanostructured materials in electroanalysis of pharmaceuticals. Anal Biochem. 2016;497:39-47. doi: 10.1016/j.ab.2015.12.018. PubMed PMID: 26751130.
- Vais RD, Sattarahmady N, Karimian K, Heli H. Green electrodeposition of gold hierarchical dendrites of pyramidal nanoparticles and determination of azathioprine. Sensors and Actuators B: Chemical. 2015;215:113-8. doi: 10.1016/j.snb.2015.03.014.
- Galozzi S, Marcus K, Barkovits K. Amyloid-β as a biomarker for Alzheimer’s disease: quantification methods in body fluids. Expert Rev Proteomics. 2015;12(4):343-54. doi: 10.1586/14789450.2015.1065183. PubMed PMID: 26153725.
- Song L, Lachno DR, Hanlon D, Shepro A, et al. A digital enzyme-linked immunosorbent assay for ultrasensitive measurement of amyloid-β 1–42 peptide in human plasma with utility for studies of Alzheimer’s disease therapeutics. Alzheimers Res Ther. 2016;8(1):58. doi: 10.1186/s13195-016-0225-7. PubMed PMID: 27978855. PubMed PMCID: PMC5160015.
- Sole-Domenech S, Johansson B, Schalling M, et al. Analysis of opioid and amyloid peptides using time-of-flight secondary ion mass spectrometry. Anal Chem. 2010;82(5):1964-74. doi: 10.1021/ac902712f. PubMed PMID: 20121067.
- Sen JW, Bergen HR, Heegaard NH. On-Line Immunoaffinity-Liquid Chromatography− Mass Spectrometry for Identification of Amyloid Disease Markers in Biological Fluids. Anal Chem. 2003;75(5):1196-202. doi: 10.1021/ac026174b. PubMed PMID: 12641241.
- Pan J, Han J, Borchers CH, Konermann L. Conformer-specific hydrogen exchange analysis of Aβ (1–42) oligomers by top-down electron capture dissociation mass spectrometry. Anal Chem. 2011;83(13):5386-93. doi: 10.1021/ac200906v. PubMed PMID: 21635007.
- Kaneko N, Yoshimori T, Yamamoto R, et al. Multi epitope-targeting immunoprecipitation using F (ab′) fragments with high affinity and specificity for the enhanced detection of a peptide with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Anal Chem. 2013;85(6):3152-9. doi: 10.1021/ac303344h. PubMed PMID: 23394179.
- Watanabe KI, Ishikawa C, Kuwahara H, Sato K, et al. A new methodology for simultaneous quantification of total-Aβ, Aβx-38, Aβx-40, and Aβx-42 by column-switching LC/MS/MS. Anal Bioanal Chem. 2012;402(6):2033-42. doi: 10.1007/s00216-011-5648-1. PubMed PMID: 22200927.
- Inoue K, Hosaka D, Mochizuki N, Akatsu H, et al. Simultaneous determination of post-translational racemization and isomerization of N-terminal amyloid-β in Alzheimer’s brain tissues by covalent chiral derivatized ultraperformance liquid chromatography tandem mass spectrometry. Anal Chem. 2014;86(1):797-804. doi: 10.1021/ac403315h. PubMed PMID: 24283798.
- Ilkhani H, Sarparast M, Noori A, Bathaie SZ, et al. Electrochemical aptamer/antibody based sandwich immunosensor for the detection of EGFR, a cancer biomarker, using gold nanoparticles as a signaling probe. Biosens Bioelectron. 2015;74:491-7. doi: 10.1016/j.bios.2015.06.063. PubMed PMID: 26176209.
- Kang DY, Lee JH, Oh BK, Choi JW. Ultra-sensitive immunosensor for β-amyloid (1–42) using scanning tunneling microscopy-based electrical detection. Biosens Bioelectron. 2009;24(5):1431-6. doi: 10.1016/j.bios.2008.08.018. PubMed PMID: 18829296.
- Higuchi M, Iwata N, Matsuba Y, Sato K, et al. 19 F and 1 H MRI detection of amyloid β plaques in vivo. Nat Neurosci. 2005;8(4):527-33. doi: 10.1038/nn1422. PubMed PMID: 15768036.
- Liu B, Shen H, Hao Y, Zhu X, et al. Lanthanide functionalized metal–organic coordination polymer: toward novel turn-on fluorescent sensing of amyloid β-peptide. Anal Chem. 2018;90(21):12449-55. doi: 10.1021/acs.analchem.8b01546. PubMed PMID: 30110150.
- Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, et al. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011;54(Suppl 1):S204-17. doi: 10.1016/j.neuroimage.2010.06.020. PubMed PMID: 20550967. PubMed PMCID: PMC2991559.
- Nesterov EE, Skoch J, Hyman BT, et al. In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. Angew Chem Int Ed Engl. 2005;44(34):5452-6. doi: 10.1002/anie.200500845. PubMed PMID: 16059955.
- Agdeppa ED, Kepe V, Liu J, Flores-Torres S, et al. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer’s disease. J Neurosci. 2001;21(24):RC189. doi: 10.1523/JNEUROSCI.21-24-j0004.2001. PubMed PMID: 11734604. PubMed PMCID: PMC6763047.
- Palmqvist S, Zetterberg H, Blennow K, et al. Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid β-amyloid 42: a cross-validation study against amyloid positron emission tomography. JAMA Neurol. 2014;71(10):1282-9. doi: 10.1001/jamaneurol.2014.1358. PubMed PMID: 25155658.
- Palladino P, Aura AM, Spoto G. Surface plasmon resonance for the label-free detection of Alzheimer’s β-amyloid peptide aggregation. Anal Bioanal Chem. 2016;408(3):849-54. doi: 10.1007/s00216-015-9172-6. PubMed PMID: 26558762.
- Huang Y, Wang R. Review on fundamentals, preparations and applications of imprinted polymers. Current Organic Chemistry. 2018;22(16):1600-18. doi: 10.2174/1385272822666180711120045.
- Tuwahatu CA, Yeung CC, Lam YW, Roy VA. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J Control Release. 2018;287:24-34. doi: 10.1016/j.jconrel.2018.08.023. PubMed PMID: 30110614.
- Pan J, Chen W, Ma Y, Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev. 2018;47(15):5574-87. doi: 10.1039/c7cs00854f. PubMed PMID: 29876564.
- Bossi A, Bonini F, Turner AP, Piletsky SA. Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron. 2007;22(6):1131-7. doi: 10.1016/j.bios.2006.06.023. PubMed PMID: 16891110.
- Ma Y, Shen XL, Wang HS, Tao J, et al. MIPs-graphene nanoplatelets-MWCNTs modified glassy carbon electrode for the determination of cardiac troponin I. Anal Biochem. 2017;520:9-15. doi: 10.1016/j.ab.2016.12.018. PubMed PMID: 28024754.
- Silva BV, Rodríguez BA, Sales GF, et al. An ultrasensitive human cardiac troponin T graphene screen-printed electrode based on electropolymerized-molecularly imprinted conducting polymer. Biosens Bioelectron. 2016;77:978-85. doi: 10.1016/j.bios.2015.10.068. PubMed PMID: 26544873.
- Yazdani Z, Yadegari H, Heli H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal Biochem. 2019;566:116-25. doi: 10.1016/j.ab.2018.11.020. PubMed PMID: 30472220.
- Ribeiro JA, Pereira CM, Silva AF, Sales MG. Electrochemical detection of cardiac biomarker myoglobin using polyphenol as imprinted polymer receptor. Anal Chim Acta. 2017;981:41-52. doi: 10.1016/j.aca.2017.05.017. PubMed PMID: 28693728.
- Kaplan M, Kilic T, Guler G, Mandli J, et al. A novel method for sensitive microRNA detection: Electropolymerization based doping. Biosens Bioelectron. 2017;92:770-8. doi: 10.1016/j.bios.2016.09.050. PubMed PMID: 27836600.
- Sharma PS, Wojnarowicz A, Sosnowska M, et al. Potentiometric chemosensor for neopterin, a cancer biomarker, using an electrochemically synthesized molecularly imprinted polymer as the recognition unit. Biosens Bioelectron. 2016;77:565-72. doi: 10.1016/j.bios.2015.10.013. PubMed PMID: 26476014.
- Da̧browski A. Adsorption-from theory to practice. Adv Colloid Interface Sci. 2001;93(1-3):135-224. doi: 10.1016/S0001-8686(00)00082-8. PubMed PMID: 11591108.
- Giles HC. The history and use of the Freundlich adsorption isotherm. Journal of the Society of Dyers and Colourists. 1973;89(8):287-91. doi: 10.1111/j.1478-4408.1973.tb03158.x.
- Zakaria ND, Yusof NA, Haron J, Abdullah AH. Synthesis and evaluation of a molecularly imprinted polymer for 2,4-Dinitrophenol. Int J Mol Sci. 2009;10(1):354-65. doi: 10.3390/ijms10010354. PubMed PMID: 19333450. PubMed PMCID: PMC2662454.
- Kanazawa KK, Diaz AF, Geiss RH, et al. ‘Organic metals’: polypyrrole, a stable synthetic ‘metallic’polymer. Journal of the Chemical Society, Chemical Communications. 1979;(19):854-5. doi: 10.1039/C39790000854.
- Menaker A, Syritski V, Reut J, Öpik A, et al. Electrosynthesized surface-imprinted conducting polymer microrods for selective protein recognition. Advanced Materials. 2009;21(22):2271-5. doi: 10.1002/adma.200803597.
- Bosserdt M, Erdőssy J, Lautner G, Witt J, et al. Microelectrospotting as a new method for electrosynthesis of surface-imprinted polymer microarrays for protein recognition. Biosensors Bioelectron. 2015;73:123-9. doi: 10.1016/j.bios.2015.05.049. PubMed PMID: 26056955.
- Karimian N, Vagin M, Zavar MH, et al. An ultrasensitive molecularly-imprinted human cardiac troponin sensor. Biosens Bioelectron. 2013;50:492-8. doi: 10.1016/j.bios.2013.07.013. PubMed PMID: 23911771.
- Moreira FT, Sharma S, Dutra RA, Noronha JP, et al. Protein-responsive polymers for point-of-care detection of cardiac biomarker. Sensors and Actuators B: Chemical. 2014;196:123-32. doi: 10.1016/j.snb.2014.01.038.
- Dechtrirat D, Jetzschmann KJ, Stöcklein WF, Scheller FW, Gajovic-Eichelmann N. Protein rebinding to a surface-confined imprint. Advanced Functional Materials. 2012;22(24):5231-7. doi: 10.1002/adfm.201201328.
- Tretjakov A, Syritski V, Reut J, Boroznjak R, et al. Surface molecularly imprinted polydopamine films for recognition of immunoglobulin G. Microchimica Acta. 2013;180(15):1433-42. doi: 10.1007/s00604-013-1039-y.
- Li L, Yang L, Xing Z, Lu X, Kan X. Surface molecularly imprinted polymers-based electrochemical sensor for bovine hemoglobin recognition. Analyst. 2013;138(22):6962-8. doi:10.1039/c3an01435e.
- Li Y, Li Y, Hong M, Bin Q, Lin Z, et al. Highly sensitive protein molecularly imprinted electro-chemical sensor based on gold microdendrites electrode and prussian blue mediatedamplification. Biosensors Bioelectron. 2013;42:612-7. doi: 10.1016/j.bios.2012.10.069.
- Jetzschmann KJ, Jágerszki G, Dechtrirat D, et al. Vectorially imprinted hybrid nanofilm for acetylcholinesterase recognition. Advanced Functional Materials. 2015;25(32):5178-83. doi: 10.1002/adfm.201501900.
- Chen HJ, Zhang ZH, Luo LJ, Yao SZ. Surface-imprinted chitosan-coated magnetic nanoparticles modified multi-walled carbon nanotubes biosensor for detection of bovine serum albumin. Sensors and Actuators B: Chemical. 2012;163(1):76-83. doi: 10.1016/j.snb.2012.01.010.
- Chen HJ, Zhang ZH, Xie D, Cai R, et al. Surface-Imprinting Sensor Based on Carbon Nanotubes/Graphene Composite for Determination of Bovine Serum Albumin. Electroanalysis. 2012;24(11):2109-16. doi: 10.1002/elan.201200375.
- Cieplak M, Szwabinska K, Sosnowska M, et al. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosens Bioelectron. 2015;74:960-6. doi: 10.1016/j.bios.2015.07.061. PubMed PMID: 26258876.
- Viswanathan S, Rani C, Ribeiro S, Delerue-Matos C. Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker. Biosens Bioelectron. 2012;33(1):179-83. doi: 10.1016/j.bios.2011.12.049. PubMed PMID: 22265879.
- Ramanaviciene A, Ramanavicius A. Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins. Biosens Bioelectron. 2004;20(6):1076-82. doi: 10.1016/j.bios.2004.05.014. PubMed PMID: 15556351.
- Lien TT, Takamura Y, Tamiya E, Mun’delanji CV. Modified screen printed electrode for development of a highly sensitive label-free impedimetric immunosensor to detect amyloid beta peptides. Anal Chim Acta. 2015;892:69-76. doi: 10.1016/j.aca.2015.08.036. PubMed PMID: 26388476.
- Kaushik A, Shah P, Vabbina PK, Jayant RD, et al. A label-free electrochemical immunosensor for beta-amyloid detection. Analytical Methods. 2016;8(31):6115-20.
- Yu Y, Zhang L, Li C, Sun X, Tang D, Shi G. A method for evaluating the level of soluble b-Amyloid(1–40/1–42) in Alzheimer’s disease based on the binding of gelsolin to b-Amyloid peptides. Angew Chem. 2014;126(47):13046-49. doi: 10.1002/ange.201405001.
- Liu L, He Q, Zhao F, Xia N, Liu H, Li S, Liu R, Zhang H. Competitive electrochemical immunoassay for detection of β-amyloid (1–42) and total β-amyloid peptides using p-aminophenol redox cycling. Biosens Bioelectron. 2014;51:208-12. doi: 10.1016/j.bios.2013.07.047. PubMed PMID: 23962708.
- Zhu L, Zhang J, Wang F, Wang Y, et al. Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification. Biosens Bioelectron. 2016;78:206-212. doi: 10.1016/j.bios.2015.11.048. PubMed PMID: 26613510.
- Rushworth JV, Ahmed A, Griffiths HH, et al. A label-free electrical impedimetric biosensor for the specific detection of Alzheimer’s amyloid-beta oligomers. Biosens Bioelectron. 2014;56:83-90. doi: 10.1016/j.bios.2013.12.036. PubMed PMID: 24480125.
- Kim CB, Choi YY, Song WK, Song KB. Antibody-based magnetic nanoparticle immunoassay for quantification of Alzheimer’s disease pathogenic factor. J Biomed Opt. 2014;19(5):051205. doi: 10.1117/1.JBO.19.5.051205. PubMed PMID: 24297060.
- Xing Y, Xia N. Biosensors for the determination of amyloid-beta peptides and their aggregates with application to Alzheimer’s disease. Analytical Letters. 2015;48(6):879-93. doi: 10.1080/00032719.2014.968925.
- Wu CC, Ku BC, Ko CH, Chiu CC, et al. Electrochemical impedance spectroscopy analysis of A-beta (1-42) peptide using a nanostructured biochip. Electrochimica Acta. 2014;134:249-57. doi: 10.1016/j.electacta.2014.04.132.
- Kruse N, Schlossmacher MG, Schulz-Schaeffer WJ, Vanmechelen E, Vanderstichele H, El-Agnaf OM, Mollenhauer B. A first tetraplex assay for the simultaneous quantification of total α-synuclein, tau, β-amyloid42 and dj-1 in human cerebrospinal fluid. PLoS One. 2016;11(4):e0153564. doi: 10.1371/journal.pone.0153564. PubMed PMID: 27116005. PubMed PMCID: PMC4846093.
- Liu L, Zhao F, Ma F, Zhang L, Yang S, Xia N. Electrochemical detection of β-amyloid peptides on electrode covered with N-terminus-specific antibody based on electrocatalytic O2 reduction by Aβ (1–16)-heme-modified gold nanoparticles. Biosens Bioelectron. 2013;49:231-5. doi: 10.1016/j.bios.2013.05.028. PubMed PMID: 23770394.
- Haes AJ, Chang L, Klein WL, Van Duyne RP. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc. 2005;127(7):2264-71. doi: 10.1021/ja044087q. PubMed PMID: 15713105.
- Kang MK, Lee J, Nguyen AH, Sim SJ. Label-free detection of ApoE4-mediated β-amyloid aggregation on single nanoparticle uncovering Alzheimer’s disease. Biosens Bioelectron. 2015;72:197-204. doi: 10.1016/j.bios.2015.05.017. PubMed PMID: 25982728.
- Zhou Y, Zhang H, Liu L, Li C, et al. Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers. Sci Rep. 2016;6:35186. doi: 10.1038/srep35186. PubMed PMID: 27725775. PubMed PMCID: PMC5057102.
- Carneiro P, Loureiro J, Delerue-Matos C, Morais S, Do Carmo Pereira M. Alzheimer’s disease: Development of a sensitive label-free electrochemical immunosensor for detection of amyloid beta peptide. Sensors and Actuators B: Chemical. 2017;239:157-65. doi: 10.1016/j.snb.2016.07.181.
- Rama EC, González-García MB, Costa-Garcia A. Competitive electrochemical immunosensor for amyloid-beta 1-42 detection based on gold nanostructurated Screen-Printed Carbon Electrodes. Sensors and Actuators B: Chemical. 2014;201:567-71. doi: 10.1016/j.snb.2014.05.044.
- Veloso AJ, Chow AM, Ganesh HV, Li N, et al. Electrochemical immunosensors for effective evaluation of amyloid-beta modulators on oligomeric and fibrillar aggregation processes. Analytical Chemistry. 2014;86(10):4901-9. doi: 10.1021/ac500424t.
- Georganopoulou DG, Chang L, Nam JM, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2005;102(7):2273-6. doi: 10.1073/pnas.0409336102. PubMed PMID: 15695586. PubMed PMCID: PMC548981.
- Gagni P, Sola L, Cretich M, Chiari M. Development of a high-sensitivity immunoassay for amyloid-beta 1–42 using a silicon microarray platform. Biosens Bioelectron. 2013;47:490-5. doi: 10.1016/j.bios.2013.03.077. PubMed PMID: 23624018.
- Li H, Cao Y, Wu X, Ye Z, Li G. Peptide-based electrochemical biosensor for amyloid β 1–42 soluble oligomer assay. Talanta. 2012;93:358-63. doi: 10.1016/j.talanta.2012.02.055. PubMed PMID: 22483923.
|