- Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270-3. doi: 10.1038/s41586-020-2012-7. PubMed PMID: 32015507; PubMed Central PMCID: PMCPMC7095418.
- Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507-13. doi: 10.1016/S0140-6736(20)30211-7. PubMed PMID: 32007143; PubMed Central PMCID: PMCPMC7135076.
- Organization WH [Internet]. Coronavirus disease (COVID-19) Pandemic. [cited 2020 11 March]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
- Hu D, Zhu C, Ai L, He T, Wang Y, Ye F, et al. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect. 2018;7:154. doi: 10.1038/s41426-018-0155-5. PubMed PMID: 30209269; PubMed Central PMCID: PMCPMC6135831.
- Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z, et al. Characteristics of COVID-19 infection in Beijing. J Infect. 2020;80:401-6. doi: 10.1016/j.jinf.2020.02.018. PubMed PMID: 32112886; PubMed Central PMCID: PMCPMC7102527.
- Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514-23. doi: 10.1016/S0140-6736(20)30154-9. PubMed PMID: 31986261; PubMed Central PMCID: PMCPMC7159286.
- Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953-66. doi: 10.1056/NEJMoa030781. PubMed PMID: 12690092.
- Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814-20. doi: 10.1056/NEJMoa1211721. PubMed PMID: 23075143.
- Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382:727-33. doi: 10.1056/NEJMoa2001017. PubMed PMID: 31978945; PubMed Central PMCID: PMCPMC7092803.
- Tang X, Wu C, Li X, Song Y, Yao X, Wu X, et al. On the origin and continuing evolution of SARS-CoV-2. National Science Review. 2020:nwaa036. doi: 10.1093/nsr/nwaa036. PubMed PMID: PMC7107875.
- Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters JL, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest. 2020;130:2757-65. doi: 10.1172/JCI138745. PubMed PMID: 32254064; PubMed Central PMCID: PMCPMC7259988.
- Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565-74. doi: 10.1016/S0140-6736(20)30251-8. PubMed PMID: 32007145; PubMed Central PMCID: PMCPMC7159086.
- Pyrc K, Bosch BJ, Berkhout B, Jebbink MF, Dijkman R, Rottier P, et al. Inhibition of human coronavirus NL63 infection at early stages of the replication cycle. Antimicrob Agents Chemother. 2006;50:2000-8. doi: 10.1128/AAC.01598-05. PubMed PMID: 16723558; PubMed Central PMCID: PMCPMC1479111.
- Boukhvalova M, Blanco JC, Falsey AR, Mond J. Treatment with novel RSV Ig RI-002 controls viral replication and reduces pulmonary damage in immunocompromised Sigmodon hispidus. Bone Marrow Transplant. 2016;51:119-26. doi: 10.1038/bmt.2015.212. PubMed PMID: 26367224; PubMed Central PMCID: PMCPMC7091900.
- Rao S, Sasser W, Diaz F, Sharma N, Alten J. Coronavirus Associated Fulminant Myocarditis Successfully Treated With Intravenous Immunoglobulin and Extracorporeal Membrane Oxygenation. Chest. 2014;146:336A-A. doi: 10.1378/chest.1992018. PubMed PMID: PMC7130250.
- Galeotti C, Kaveri SV, Bayry J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int Immunol. 2017;29:491-8. doi: 10.1093/intimm/dxx039. PubMed PMID: 28666326.
- Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol. 2016;3:237-61. doi: 10.1146/annurev-virology-110615-042301. PubMed PMID: 27578435; PubMed Central PMCID: PMCPMC5457962.
- Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7:226-36. doi: 10.1038/nrmicro2090. PubMed PMID: 19198616; PubMed Central PMCID: PMCPMC2750777.
- Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450-4. doi: 10.1038/nature02145. PubMed PMID: 14647384; PubMed Central PMCID: PMCPMC7095016.
- Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 2011;85:873-82. doi: 10.1128/JVI.02062-10. PubMed PMID: 21068237; PubMed Central PMCID: PMCPMC3020023.
- Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85:4122-34. doi: 10.1128/JVI.02232-10. PubMed PMID: 21325420; PubMed Central PMCID: PMCPMC3126222.
- Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 2010;84:12658-64. doi: 10.1128/JVI.01542-10. PubMed PMID: 20926566; PubMed Central PMCID: PMCPMC3004351.
- Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24:1634-43. doi: 10.1038/sj.emboj.7600640. PubMed PMID: 15791205; PubMed Central PMCID: PMCPMC1142572.
- Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309:1864-8. doi: 10.1126/science.1116480. PubMed PMID: 16166518.
- Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271-80 e8. doi: 10.1016/j.cell.2020.02.052. PubMed PMID: 32142651; PubMed Central PMCID: PMCPMC7102627.
- Wysocki J, Ye M, Rodriguez E, Gonzalez-Pacheco FR, Barrios C, Evora K, et al. Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension. Hypertension. 2010;55:90-8. doi: 10.1161/HYPERTENSIONAHA.109.138420. PubMed PMID: 19948988; PubMed Central PMCID: PMCPMC2827767.
- Kubo H, Yamada YK, Taguchi F. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol. 1994;68:5403-10. doi: 10.1128/JVI.68.9.5403-5410.1994. PubMed PMID: 7520090; PubMed Central PMCID: PMCPMC236940.
- Lee PI, Hsueh PR. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J Microbiol Immunol Infect. 2020;53:365-7. doi: 10.1016/j.jmii.2020.02.001. PubMed PMID: 32035811; PubMed Central PMCID: PMCPMC7102579.
- Ko JH, Seok H, Cho SY, Ha YE, Baek JY, Kim SH, et al. Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience. Antivir Ther. 2018;23:617-22. doi: 10.3851/IMP3243. PubMed PMID: 29923831.
- Hung IF, To KK, Lee CK, Lee KL, Chan K, Yan WW, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis. 2011;52:447-56. doi: 10.1093/cid/ciq106. PubMed PMID: 21248066; PubMed Central PMCID: PMCPMC7531589.
- Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med. 2007;357:1450-1. doi: 10.1056/NEJMc070359. PubMed PMID: 17914053.
- Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MH, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005;24:44-6. doi: 10.1007/s10096-004-1271-9. PubMed PMID: 15616839; PubMed Central PMCID: PMCPMC7088355.
- Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020;20:398-400. doi: 10.1016/S1473-3099(20)30141-9. PubMed PMID: 32113510; PubMed Central PMCID: PMCPMC7128218.
- van Erp EA, Luytjes W, Ferwerda G, van Kasteren PB. Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease. Front Immunol. 2019;10:548. doi: 10.3389/fimmu.2019.00548. PubMed PMID: 30967872; PubMed Central PMCID: PMCPMC6438959.
- Gunn BM, Yu WH, Karim MM, Brannan JM, Herbert AS, Wec AZ, et al. A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host Microbe. 2018;24:221-33 e5. doi: 10.1016/j.chom.2018.07.009. PubMed PMID: 30092199; PubMed Central PMCID: PMCPMC6298217.
- Marano G, Vaglio S, Pupella S, Facco G, Catalano L, Liumbruno GM, et al. Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus. 2016;14:152-7. doi: 10.2450/2015.0131-15. PubMed PMID: 26674811; PubMed Central PMCID: PMCPMC4781783.
- Kong LK, Zhou BP. Successful treatment of avian influenza with convalescent plasma. Hong Kong Med J. 2006;12:489. PubMed PMID: 17148811.
- Yeh KM, Chiueh TS, Siu LK, Lin JC, Chan PK, Peng MY, et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother. 2005;56:919-22. doi: 10.1093/jac/dki346. PubMed PMID: 16183666; PubMed Central PMCID: PMCPMC7110092.
- Wong VW, Dai D, Wu AK, Sung JJ. Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med J. 2003;9:199-201. PubMed PMID: 12777656.
- Li G, Chen X, Xu A. Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med. 2003;349:508-9. doi: 10.1056/NEJM200307313490520. PubMed PMID: 12890855.
- Maillet A, Guilleminault L, Lemarie E, Lerondel S, Azzopardi N, Montharu J, et al. The airways, a novel route for delivering monoclonal antibodies to treat lung tumors. Pharm Res. 2011;28:2147-56. doi: 10.1007/s11095-011-0442-5. PubMed PMID: 21491145.
- Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020;117:9490-6. doi: 10.1073/pnas.2004168117. PubMed PMID: 32253318; PubMed Central PMCID: PMCPMC7196837.
- Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020;323:1582-9. doi: 10.1001/jama.2020.4783. PubMed PMID: 32219428; PubMed Central PMCID: PMCPMC7101507.
- NHC. Clinical treatment of convalescent plasma for COVID-19 (trial edition 2). Beijing: National Health Commission; 2020.
- Zeng F, Chen X, Deng G. Convalescent plasma for patients with COVID-19. Proc Natl Acad Sci U S A. 2020;117:12528. doi: 10.1073/pnas.2006961117. PubMed PMID: 32398379; PubMed Central PMCID: PMCPMC7293648.
- Eickmann M, Gravemann U, Handke W, Tolksdorf F, Reichenberg S, Muller TH, et al. Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively. Transfusion. 2018;58:2202-7. doi: 10.1111/trf.14652. PubMed PMID: 29732571; PubMed Central PMCID: PMCPMC7169708.
- Amiral J, Vissac AM, Seghatchian J. Covid-19, induced activation of hemostasis, and immune reactions: Can an auto-immune reaction contribute to the delayed severe complications observed in some patients? Transfus Apher Sci. 2020;59:102804. doi: 10.1016/j.transci.2020.102804. PubMed PMID: 32387238; PubMed Central PMCID: PMCPMC7252011.
- Burnouf T, Seghatchian J. Ebola virus convalescent blood products: where we are now and where we may need to go. Transfus Apher Sci. 2014;51:120-5. doi: 10.1016/j.transci.2014.10.003. PubMed PMID: 25457751; PubMed Central PMCID: PMCPMC7106377.
- Organization WH [Internet]. Maintenance break. [cited 2020 18 July]. Available from: http://www.who.int/bloodproducts/brn
- Seghatchian J, Lanza F. Convalescent plasma, an apheresis research project targeting and motivating the fully recovered COVID 19 patients: A rousing message of clinical benefit to both donors and recipients alike. Transfus Apher Sci. 2020;59:102794. doi: 10.1016/j.transci.2020.102794. PubMed PMID: 32448638; PubMed Central PMCID: PMCPMC7177094.
- Meng Z, Wang T, Li C, Chen X, Li L, Qin X, et al. An experimental trial of recombinant human interferon alpha nasal drops to prevent coronavirus disease 2019 in medical staff in an epidemic area. MedRxiv. 2020. doi: 10.1101/2020.04.11.20061473.
- Liu FY, Kildsig DO, Mitra AK. Pulmonary biotransformation of insulin in rat and rabbit. Life Sci. 1992;51:1683-9. doi: 10.1016/0024-3205(92)90313-e. PubMed PMID: 1435076.
- Shah N, Shah V, Chivate N. Pulmonary drug delivery: a promising approach. J Appl Pharm Sci. 2012;2:33-7.
- Shen Z, Zhang Q, Wei S, Nagai T. Proteolytic enzymes as a limitation for pulmonary absorption of insulin: in vitro and in vivo investigations. Int J Pharm. 1999;192:115-21. doi: 10.1016/s0378-5173(99)00295-1. PubMed PMID: 10567743.
- Zhou XH. Overcoming enzymatic and absorption barriers to non-parenterally administered protein and peptide drugs. Journal of Controlled Release. 1994;29:239-52. doi: 10.1016/0168-3659(94)90071-X.
- Fukuda Y, Tsuji T, Fujita T, Yamamoto A, Muranishi S. Susceptibility of insulin to proteolysis in rat lung homogenate and its protection from proteolysis by various protease inhibitors. Biol Pharm Bull. 1995;18:891-4. doi: 10.1248/bpb.18.891. PubMed PMID: 7550127.
- Dellamary L, Smith DJ, Bloom A, Bot S, Guo GR, Deshmuk H, et al. Rational design of solid aerosols for immunoglobulin delivery by modulation of aerodynamic and release characteristics. J Control Release. 2004;95:489-500. doi: 10.1016/j.jconrel.2003.12.013. PubMed PMID: 15023460.
- Patton JS, Platz RM. (D) Routes of delivery: Case studies:(2) Pulmonary delivery of peptides and proteins for systemic action. Advanced Drug Delivery Reviews. 1992;8:179-96. doi: 10.1016/0169-409X(92)90002-8.
- Pressler T. Review of recombinant human deoxyribonuclease (rhDNase) in the management of patients with cystic fibrosis. Biologics. 2008;2:611-7. doi: 10.2147/btt.s3052. PubMed PMID: 19707442; PubMed Central PMCID: PMCPMC2727891.
- Schule S, Schulz-Fademrecht T, Garidel P, Bechtold-Peters K, Frieb W. Stabilization of IgG1 in spray-dried powders for inhalation. Eur J Pharm Biopharm. 2008;69:793-807. doi: 10.1016/j.ejpb.2008.02.010. PubMed PMID: 18477504.
- Engelhardt L, Rohm M, Mavoungou C, Schindowski K, Schafmeister A, Simon U. First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain Delivered Biopharmaceuticals. Pharm Res. 2016;33:1337-50. doi: 10.1007/s11095-016-1875-7. PubMed PMID: 26887679.
- Moller W, Schuschnig U, Bartenstein P, Meyer G, Haussinger K, Schmid O, et al. Drug delivery to paranasal sinuses using pulsating aerosols. J Aerosol Med Pulm Drug Deliv. 2014;27:255-63. doi: 10.1089/jamp.2013.1071. PubMed PMID: 25084017.
- Coates AL. Guiding aerosol deposition in the lung. N Engl J Med. 2008;358:304-5. doi: 10.1056/NEJMcibr0707489. PubMed PMID: 18199871.
- Bosquillon C, Rouxhet PG, Ahimou F, Simon D, Culot C, Preat V, et al. Aerosolization properties, surface composition and physical state of spray-dried protein powders. J Control Release. 2004;99:357-67. doi: 10.1016/j.jconrel.2004.07.022. PubMed PMID: 15451594.
- Couston RG, Skoda MW, Uddin S, van der Walle CF. Adsorption behavior of a human monoclonal antibody at hydrophilic and hydrophobic surfaces. MAbs. 2013;5:126-39. doi: 10.4161/mabs.22522. PubMed PMID: 23196810; PubMed Central PMCID: PMCPMC3564877.
- Maa YF, Hsu CC. Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol Bioeng. 1997;54:503-12. doi: 10.1002/(SICI)1097-0290(19970620)54:6<503::AID-BIT1>3.0.CO;2-N. PubMed PMID: 18636406.
- Respaud R, Marchand D, Parent C, Pelat T, Thullier P, Tournamille JF, et al. Effect of formulation on the stability and aerosol performance of a nebulized antibody. MAbs. 2014;6:1347-55. doi: 10.4161/mabs.29938. PubMed PMID: 25517319; PubMed Central PMCID: PMCPMC4623101.
- Yu Z, Johnston KP, Williams RO, 3rd. Spray freezing into liquid versus spray-freeze drying: influence of atomization on protein aggregation and biological activity. Eur J Pharm Sci. 2006;27:9-18. doi: 10.1016/j.ejps.2005.08.010. PubMed PMID: 16188431.
- Hertel SP, Winter G, Friess W. Protein stability in pulmonary drug delivery via nebulization. Adv Drug Deliv Rev. 2015;93:79-94. doi: 10.1016/j.addr.2014.10.003. PubMed PMID: 25312674.
- Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014;75:81-91. doi: 10.1016/j.addr.2014.05.017. PubMed PMID: 24915637.
- Le Brun PP, de Boer AH, Heijerman HG, Frijlink HW. A review of the technical aspects of drug nebulization. Pharm World Sci. 2000;22:75-81. doi: 10.1023/a:1008786600530. PubMed PMID: 11028259.
- Martin AR, Finlay WH. Nebulizers for drug delivery to the lungs. Expert Opin Drug Deliv. 2015;12:889-900. doi: 10.1517/17425247.2015.995087. PubMed PMID: 25534396.
- Shoyele SA, Slowey A. Prospects of formulating proteins/peptides as aerosols for pulmonary drug delivery. Int J Pharm. 2006;314:1-8. doi: 10.1016/j.ijpharm.2006.02.014. PubMed PMID: 16563674.
- Aungst BJ. Absorption enhancers: applications and advances. AAPS J. 2012;14:10-8. doi: 10.1208/s12248-011-9307-4. PubMed PMID: 22105442; PubMed Central PMCID: PMCPMC3291189.
- Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6:67-74. doi: 10.1038/nrd2153. PubMed PMID: 17195033.
- van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci. 2001;14:201-7. doi: 10.1016/s0928-0987(01)00172-5. PubMed PMID: 11576824.
- Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020;368:409-12. doi: 10.1126/science.abb3405. PubMed PMID: 32198291; PubMed Central PMCID: PMCPMC7164518.
- Guilleminault L, Azzopardi N, Arnoult C, Sobilo J, Herve V, Montharu J, et al. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. J Control Release. 2014;196:344-54. doi: 10.1016/j.jconrel.2014.10.003. PubMed PMID: 25451545.
- Koleba T, Ensom MH. Pharmacokinetics of intravenous immunoglobulin: a systematic review. Pharmacotherapy. 2006;26:813-27. doi: 10.1592/phco.26.6.813. PubMed PMID: 16716135.
- Ari A. Practical strategies for a safe and effective delivery of aerosolized medications to patients with COVID-19. Respir Med. 2020;167:105987. doi: 10.1016/j.rmed.2020.105987. PubMed PMID: 32421541; PubMed Central PMCID: PMCPMC7172670.
- Hart TK, Cook RM, Zia-Amirhosseini P, Minthorn E, Sellers TS, Maleeff BE, et al. Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys. J Allergy Clin Immunol. 2001;108:250-7. doi: 10.1067/mai.2001.116576. PubMed PMID: 11496242.
- Al-Subu AM, Hagen S, Eldridge M, Boriosi J. Aerosol therapy through high flow nasal cannula in pediatric patients. Expert Rev Respir Med. 2017;11:945-53. doi: 10.1080/17476348.2017.1391095. PubMed PMID: 28994337.
- Ari A. Aerosol Drug Delivery Through High Flow Nasal Cannula. Curr Pharm Biotechnol. 2017;18:877-82. doi: 10.2174/1389201019666171219104217. PubMed PMID: 29256347.
- Frat JP, Coudroy R, Marjanovic N, Thille AW. High-flow nasal oxygen therapy and noninvasive ventilation in the management of acute hypoxemic respiratory failure. Ann Transl Med. 2017;5:297. doi: 10.21037/atm.2017.06.52. PubMed PMID: 28828372; PubMed Central PMCID: PMCPMC5537116.
- Hui DS, Chow BK, Lo T, Ng SS, Ko FW, Gin T, et al. Exhaled air dispersion during noninvasive ventilation via helmets and a total facemask. Chest. 2015;147:1336-43. doi: 10.1378/chest.14-1934. PubMed PMID: 25392954; PubMed Central PMCID: PMCPMC7094250.
- Hui DS, Chow BK, Lo T, Tsang OTY, Ko FW, Ng SS, et al. Exhaled air dispersion during high-flow nasal cannula therapy versus CPAP via different masks. Eur Respir J. 2019;53. doi: 10.1183/13993003.02339-2018. PubMed PMID: 30705129.
- Leung CCH, Joynt GM, Gomersall CD, Wong WT, Lee A, Ling L, et al. Comparison of high-flow nasal cannula versus oxygen face mask for environmental bacterial contamination in critically ill pneumonia patients: a randomized controlled crossover trial. J Hosp Infect. 2019;101:84-7. doi: 10.1016/j.jhin.2018.10.007. PubMed PMID: 30336170.
- Chinese Medical Association Respiratory Branch. Expert consensus on protective measures related to respiratory therapy in patients with severe and critical coronavirus infection. Chinese Journal of Tuberculosis and Respiratory Diseases. 2020;17.
- Hui DS, Chow BK, Chu L, Ng SS, Lee N, Gin T, et al. Exhaled air dispersion during coughing with and without wearing a surgical or N95 mask. PLoS One. 2012;7:e50845. doi: 10.1371/journal.pone.0050845. PubMed PMID: 23239991; PubMed Central PMCID: PMCPMC3516468.
- Wei J, Li Y. Airborne spread of infectious agents in the indoor environment. Am J Infect Control. 2016;44:S102-8. doi: 10.1016/j.ajic.2016.06.003. PubMed PMID: 27590694; PubMed Central PMCID: PMCPMC7115322.
- Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061-9. doi: 10.1001/jama.2020.1585. PubMed PMID: 32031570; PubMed Central PMCID: PMCPMC7042881.
- Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475-81. doi: 10.1016/S2213-2600(20)30079-5. PubMed PMID: 32105632; PubMed Central PMCID: PMCPMC7102538.
- Ari A. Aerosol therapy for mechanically ventilated patients: devices, issues, selection & technique. Clin Found. 2012;14:1-12.
- Ari A. Aerosol Therapy in Pulmonary Critical Care. Respir Care. 2015;60:858-74; discussion 74-9. doi: 10.4187/respcare.03790. PubMed PMID: 26070580.
- Ari A, Areabi H, Fink JB. Evaluation of aerosol generator devices at 3 locations in humidified and non-humidified circuits during adult mechanical ventilation. Respir Care. 2010;55:837-44. PubMed PMID: 20587094.
- Ari A, Atalay OT, Harwood R, Sheard MM, Aljamhan EA, Fink JB. Influence of nebulizer type, position, and bias flow on aerosol drug delivery in simulated pediatric and adult lung models during mechanical ventilation. Respir Care. 2010;55:845-51. PubMed PMID: 20587095.
- Ari A, Fink JB, Dhand R. Inhalation therapy in patients receiving mechanical ventilation: an update. J Aerosol Med Pulm Drug Deliv. 2012;25:319-32. doi: 10.1089/jamp.2011.0936. PubMed PMID: 22856594.
- Berlinski A, Willis JR. Albuterol delivery by 4 different nebulizers placed in 4 different positions in a pediatric ventilator in vitro model. Respir Care. 2013;58:1124-33. doi: 10.4187/respcare.02074. PubMed PMID: 23107173.
- Ari A. Jet, ultrasonic, and mesh nebulizers: an evaluation of nebulizers for better clinical outcomes. 2014. Eurasian J Pulmonol. 2014;16:1-7. doi: 10.5152/ejp.2014.00087.
- Ari A, de Andrade AD, Sheard M, AlHamad B, Fink JB. Performance Comparisons of Jet and Mesh Nebulizers Using Different Interfaces in Simulated Spontaneously Breathing Adults and Children. J Aerosol Med Pulm Drug Deliv. 2015;28:281-9. doi: 10.1089/jamp.2014.1149. PubMed PMID: 25493535.
- Rau JL, Ari A, Restrepo RD. Performance comparison of nebulizer designs: constant-output, breath-enhanced, and dosimetric. Respir Care. 2004;49:174-9. PubMed PMID: 14744267.
- Gordon SB, Read RC. Macrophage defences against respiratory tract infections. Br Med Bull. 2002;61:45-61. doi: 10.1093/bmb/61.1.45. PubMed PMID: 11997298.
- Kleinstreuer C, Zhang Z, Donohue JF. Targeted drug-aerosol delivery in the human respiratory system. Annu Rev Biomed Eng. 2008;10:195-220. doi: 10.1146/annurev.bioeng.10.061807.160544. PubMed PMID: 18412536.
- Wagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B. 2018;8:147-64. doi: 10.1016/j.apsb.2018.01.013. PubMed PMID: 29719776; PubMed Central PMCID: PMCPMC5925450.
- Kunda NK, Somavarapu S, Gordon SB, Hutcheon GA, Saleem IY. Nanocarriers targeting dendritic cells for pulmonary vaccine delivery. Pharm Res. 2013;30:325-41. doi: 10.1007/s11095-012-0891-5. PubMed PMID: 23054093.
- Depreter F, Pilcer G, Amighi K. Inhaled proteins: challenges and perspectives. Int J Pharm. 2013;447:251-80. doi: 10.1016/j.ijpharm.2013.02.031. PubMed PMID: 23499756.
- Picanco-Castro V, de Freitas MC, Bomfim Ade S, de Sousa Russo EM. Patents in therapeutic recombinant protein production using mammalian cells. Recent Pat Biotechnol. 2014;8:165-71. doi: 10.2174/1872208309666140904120404. PubMed PMID: 25185983.
- Hussain A, Arnold JJ, Khan MA, Ahsan F. Absorption enhancers in pulmonary protein delivery. J Control Release. 2004;94:15-24. doi: 10.1016/j.jconrel.2003.10.001. PubMed PMID: 14684268.
- Jorgensen L, Nielson HM. Delivery technologies for biopharmaceuticals: peptides, proteins, nucleic acids and vaccines. New Jersey: John Wiley & Sons; 2009.
- Awwad S, Angkawinitwong U. Overview of Antibody Drug Delivery. Pharmaceutics. 2018;10. doi: 10.3390/pharmaceutics10030083. PubMed PMID: 29973504; PubMed Central PMCID: PMCPMC6161251.
- Guo S, Li H, Ma M, Fu J, Dong Y, Guo P. Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles. Mol Ther Nucleic Acids. 2017;9:399-408. doi: 10.1016/j.omtn.2017.10.010. PubMed PMID: 29246318; PubMed Central PMCID: PMCPMC5701797.
- de Heer HJ, Hammad H, Kool M, Lambrecht BN. Dendritic cell subsets and immune regulation in the lung. Semin Immunol. 2005;17:295-303. doi: 10.1016/j.smim.2005.05.002. PubMed PMID: 15967679.
- Osman N, Kaneko K, Carini V, Saleem I. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin Drug Deliv. 2018;15:821-34. doi: 10.1080/17425247.2018.1502267. PubMed PMID: 30021074; PubMed Central PMCID: PMCPMC6110405.
- Ahn JY, Sohn Y, Lee SH, Cho Y, Hyun JH, Baek YJ, et al. Use of Convalescent Plasma Therapy in Two COVID-19 Patients with Acute Respiratory Distress Syndrome in Korea. J Korean Med Sci. 2020;35:e149. doi: 10.3346/jkms.2020.35.e149. PubMed PMID: 32281317; PubMed Central PMCID: PMCPMC7152526.
- Figlerowicz M, Mania A, Lubarski K, Lewandowska Z, Sluzewski W, Derwich K, et al. First case of convalescent plasma transfusion in a child with COVID-19-associated severe aplastic anemia. Transfus Apher Sci. 2020;59:102866. doi: 10.1016/j.transci.2020.102866. PubMed PMID: 32636116; PubMed Central PMCID: PMCPMC7328608.
- Tanne JH. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients. BMJ. 2020;368:m1256. doi: 10.1136/bmj.m1256. PubMed PMID: 32217555.
- Joyner M, Wright RS, Fairweather D, Senefeld J, Bruno K, Klassen S, et al. Early Safety Indicators of COVID-19 Convalescent Plasma in 5,000 Patients. medRxiv. 2020. doi: 10.1101/2020.05.12.20099879. PubMed PMID: 32511566; PubMed Central PMCID: PMCPMC7274247.
- Joyner MJ, Bruno KA, Klassen SA, Kunze KL, Johnson PW, Lesser ER, et al. Safety Update: COVID-19 Convalescent Plasma in 20,000 Hospitalized Patients. Mayo Clin Proc. 2020;95:1888-97. doi: 10.1016/j.mayocp.2020.06.028. PubMed PMID: 32861333; PubMed Central PMCID: PMCPMC7368917.
- Lanza F, Seghatchian J. Reflection on passive immunotherapy in those who need most: some novel strategic arguments for obtaining safer therapeutic plasma or autologous antibodies from recovered COVID-19 infected patients. Br J Haematol. 2020;190:e27-e9. doi: 10.1111/bjh.16814. PubMed PMID: 32407543; PubMed Central PMCID: PMCPMC7272917.
- Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. medRxiv. 2020. doi: 10.1101/2020.03.17.20037713. PubMed PMID: 32511441; PubMed Central PMCID: PMCPMC7239062.
- Okba NM, Muller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, et al. SARS-CoV-2 specific antibody responses in COVID-19 patients. medRxiv. 2020. doi: 10.1101/2020.03.18.20038059.
- Guo L, Ren L, Yang S, Xiao M, Chang, Yang F, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020;71:778-85. doi: 10.1093/cid/ciaa310. PubMed PMID: 32198501; PubMed Central PMCID: PMCPMC7184472.
- Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol. 2020;92:1518-24. doi: 10.1002/jmv.25727. PubMed PMID: 32104917; PubMed Central PMCID: PMCPMC7228300.
- Johnson ME, Manasse HR, Pezzuto JM. Biotechnology and Pharmacy. New York: Chapman and Hall; 1993.
- Banga AK, Chien YW. Hydrogel-based iontotherapeutic delivery devices for transdermal delivery of peptide/protein drugs. Pharm Res. 1993;10:697-702. doi: 10.1023/a:1018955631835. PubMed PMID: 8321834.
- Lee YC, Yalkowsky SH. Effect of formulation on the systemic absorption of insulin from enhancer-free ocular devices. Int J Pharm. 1999;185:199-204. doi: 10.1016/s0378-5173(99)00156-8. PubMed PMID: 10460915.
- O’Hagan DT, Illum L. Absorption of peptides and proteins from the respiratory tract and the potential for development of locally administered vaccine. Crit Rev Ther Drug Carrier Syst. 1990;7:35-97. PubMed PMID: 2257636.
- Sayani AP, Chien YW. Systemic delivery of peptides and proteins across absorptive mucosae. Crit Rev Ther Drug Carrier Syst. 1996;13:85-184. PubMed PMID: 8853960.
- Torres-Lugo M, Peppas NA. Transmucosal delivery systems for calcitonin: a review. Biomaterials. 2000;21:1191-6. doi: 10.1016/s0142-9612(00)00011-9. PubMed PMID: 10811300.
- Aurora J. Delivery of protein and peptides–challenges and opportunities. Business Briefing: Future Drug Discovery. 2006:38-40.
- Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93:2645-68. doi: 10.1002/jps.20178. PubMed PMID: 15389672.
- Waldmann T, Rosenoer V, Oratz M, Rothschild M. Albumin structure, function and uses. Oxford: Pergamon Press; 1977.
- Yeh P, Landais D, Lemaitre M, Maury I, Crenne JY, Becquart J, et al. Design of yeast-secreted albumin derivatives for human therapy: biological and antiviral properties of a serum albumin-CD4 genetic conjugate. Proc Natl Acad Sci U S A. 1992;89:1904-8. doi: 10.1073/pnas.89.5.1904. PubMed PMID: 1542690; PubMed Central PMCID: PMCPMC48562.
- Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet. 2001;40:539-51. doi: 10.2165/00003088-200140070-00005. PubMed PMID: 11510630.
- Torchilin VP. Immobilized enzymes in medicine. Progress in Clinical Biochemistry and Medicine. 1991;11. doi: 10.1007/978-3-642-75821-8.
- Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9:325-38. doi: 10.1038/nrd3003. PubMed PMID: 20305665.
- Mitchell JP, Berlinski A, Canisius S, Cipolla D, Dolovich MB, Gonda I, et al. Urgent Appeal from International Society for Aerosols in Medicine (ISAM) During COVID-19: Clinical Decision Makers and Governmental Agencies Should Consider the Inhaled Route of Administration: A Statement from the ISAM Regulatory and Standardization Issues Networking Group. J Aerosol Med Pulm Drug Deliv. 2020;33:235-8. doi: 10.1089/jamp.2020.1622. PubMed PMID: 32589076.
|