Background: Magnetic resonance spectroscopy (MRS) is a non-invasive diagnostic and the neuroimaging method of choice for the noninvasive monitoring of brain metabolism in patients with glioma tumors. 1H-MRS is a reliable and non-invasive tool used to study glioma. However, the metabolite spectra obtained by 1H-MRS requires a specific quantification procedure for post-processing. According to our knowledge, no comparisons have yet been made between spectrum analysis software for quantification of gliomas metabolites. Objective: Current study aims to evaluate the difference between this two common software in quantifying cerebral metabolites. Material and Methods: In this analytical study, we evaluate two post-processing software packages, java-based graphical for MR user interface packages (jMRUI) and totally automatic robust quantitation in NMR (TARQUIN) software. 1H-MRS spectrum from the brain of patients with gliomas tumors was collected for post-processing. AMARES algorithms were conducted to metabolite qualification on jMRUI software, and TARQUIN software were implemented with automated quantification algorithms. The study included a total of 30 subjects. For quantification, subjects were divided into a normal group (n=15) and group of gliomas (n=15). Results: When calculated by TARQUIN, the mean metabolites ratio was typically lower than by jMRUI. While, the mean ratio of metabolites varied when quantified by jMRUI vs. TARQUIN, both methods apparent clinical associations. Conclusion: TARQUIN and jMRUI are feasible choices for the post-processing of cerebral MRS data obtained from glioma tumors. |
- Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014;16(suppl_4):iv1-63. doi: 10.1093/neuonc/nou223. PubMed PMID: 25304271. PubMed PMCID: PMC4193675.
- Horbinski C, Ligon KL, Brastianos P, et al. The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients. Neuro Oncol. 2019;21(12):1498-508. doi: 10.1093/neuonc/noz119. PubMed PMID: 31276167. PubMed PMCID: PMC6917404.
- Smirniotopoulos JG, Jäger HR. Diseases of the Brain, Head and Neck, Spine 2020–2023: Diagnostic Imaging. Cham, Switzerland: Springer; 2020. Chapter 8, Differential Diagnosis of Intracranial Masses; p. 93-104.
- Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24(10):1989-98. PubMed PMID: 14625221.
- Shukla G, Alexander GS, Bakas S, et al. Advanced magnetic resonance imaging in glioblastoma: a review. Chin Clin Oncol. 2017;6(4):40. doi: 10.21037/cco.2017.06.28. PubMed PMID: 28841802.
- Al-Okaili RN, Krejza J, Wang S, et al. Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. Radiographics. 2006;26(Suppl 1):S173-89. doi: 10.1148/rg.26si065513. PubMed PMID: 17050514.
- Villanueva-Meyer JE, Mabray MC, Cha S. Current Clinical Brain Tumor Imaging. Neurosurgery. 2017;81(3):397-415. doi: 10.1093/neuros/nyx103. PubMed PMID: 28486641. PubMed PMCID: PMC5581219.
- Aydin H, Sipahioğlu S, Oktay NA, et al. The value of proton MR-spectroscopy in the differentiation of brain tumours from non-neoplastic brain lesions. JBR-BTR. 2011;94(1):1-10. PubMed PMID: 21466053.
- Horská A, Barker PB. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am. 2010;20(3):293-310. doi: 10.1016/j.nic.2010.04.003. PubMed PMID: 20708548. PubMed PMCID: PMC2927327.
- Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol. 2009;64(1):12-21. doi: 10.1016/j.crad.2008.07.002. PubMed PMID: 19070693.
- Dong-Hyun K. Magnetic Resonance Spectroscopy. Rijeka: InTech; 2012.
- Jabłoński M, Starčuková J, Starčuk Jr Z. Processing tracking in jMRUI software for magnetic resonance spectra quantitation reproducibility assurance. BMC Bioinformatics. 2017;18(1):56. doi: 10.1186/s12859-017-1459-5. PubMed PMID: 28114896. PubMed PMCID: PMC5260066.
- Wilson M, Reynolds G, Kauppinen RA, et al. A constrained least-squares approach to the automated quantitation of in vivo ¹H magnetic resonance spectroscopy data. Magn Reson Med. 2011;65(1):1-12. doi: 10.1002/mrm.22579. PubMed PMID: 20878762.
- Vanhamme L, Fierro RD, Van Huffel S, De Beer R. Fast Removal of Residual Water in Proton Spectra. J Magn Reson. 1998;132(2):197-203. doi: 10.1006/jmre.1998.1425. PubMed PMID: 9632545.
- Mullins PG, Rowland L, Bustillo J, et al. Reproducibility of 1H-MRS measurements in schizophrenic patients. Magn Reson Med. 2003;50(4):704-7. doi: 10.1002/mrm.10598. PubMed PMID: 14523955.
- Pels P, Ozturk-Isik E, Swanson MG, et al. Quantification of prostate MRSI data by model-based time domain fitting and frequency domain analysis. NMR Biomed. 2006;19(2):188-97. doi: 10.1002/nbm.1008. PubMed PMID: 16411280.
- Vanhamme L, Van Den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35-43. doi: 10.1006/jmre.1997.1244. PubMed PMID: 9405214.
- Van Den Boogaart A. A users guide to the magnetic resonance user interface software package MRUI manual V96.3. Delft, Netherlands; 1997.
- Poullet JB, Sima DM, Simonetti AW, et al. An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES. NMR Biomed. 2007;20(5):493-504. doi: 10.1002/nbm.1112. PubMed PMID: 17167819.
- Scott J, Underwood J, Garvey LJ, et al. A comparison of two post-processing analysis methods to quantify cerebral metabolites measured via proton magnetic resonance spectroscopy in HIV disease. Br J Radiol. 2016;89(1060):20150979. doi: 10.1259/bjr.20150979. PubMed PMID: 26954329. PubMed PMCID: PMC4846219.
- Lentz MR, Kim WK, Kim H, et al. Alterations in brain metabolism during the first year of HIV infection. J Neurovirol. 2011;17:220-9. doi: 10.1007/s13365-011-0030-9.
|