- Muth J, Poggie M, Kulesha G, Michael Meneghini R. Novel highly porous metal technology in artificial hip and knee replacement: Processing methodologies and clinical applications. Jom. 2013;65(2):318-25. doi: 10.1007/s11837-012-0528-5.
- Zaharin HA, Abdul Rani AM, Azam FI, et al. Effect of Unit Cell Type and Pore Size on Porosity and Mechanical Behavior of Additively Manufactured Ti6Al4V Scaffolds. Materials (Basel). 2018;11(12):2402. doi: 10.3390/ma11122402. PubMed PMID: 30487419. PubMed PMCID: PMC6317238.
- Yuan L, Ding S, Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioact Mater. 2018;4(1):56-70. doi: 10.1016/j.bioactmat.2018.12.003. PubMed PMID: 30596158. PubMed PMCID: PMC6305839.
- Banks A. A review of bone implants and the suitability of porous Nitinol. 2014. Available from: http://faculty.olin.edu/~asieminski/topics/documents/excellent_paper_2008.pdf.
- Pałka K, Pokrowiecki R. Porous titanium implants: A review. Adv Eng Mater. 2018;20(5):1700648. doi: 10.1002/adem.201700648.
- Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY. Metallic powder bed based 3D printing of cellular scaffolds for orthopaedic implants: A state of the art review on manufacturing, topological design, mechanical properties and biocompatibility. Materials Science and Engineering C. 2017;76:1328-43. doi: 10.1016/j.msec.2017.02.094. PubMed PMID: 28482501.
- Gao C, Wang C, Jin H, Wang Z, et al. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Advances. 2018;8(44):25210-27. doi: 10.1039/c8ra04815k.
- Wang X, Xu S, Zhou S, Xu W, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials. 2016;83:127-41. doi: 10.1016/j.biomaterials.2016.01.012. PubMed PMID: 26773669.
- Rotta G, Seramak T, Zasińska K. Estimation of young’s modulus of the porous titanium alloy with the use of fem package. Adv Mater Sci. 2015;15(4):29-37. doi: 10.1515/adms-2015-0020.
- Ataee A, Li Y, Fraser D, Song G, Wen C. Anisotropic Ti6Al4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater Des. 2018;137:345-54; doi: 10.1016/j.matdes.2017.10.040.
- Yánez A, Herrera A, Martel O, Monopoli D, Afonso H. Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications. Materials Science and Engineering C. 2016;68:445-8. doi: 10.1016/j.msec.2016.06.016. PubMed PMID: 27524040.
- Yang L, Mertens R, Ferrucci M, Yan C, et al. Continuous graded gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties. Mater Des. 2019;162:394-404. doi: 10.1016/j.matdes.2018.12.007.
- Fouda N, Eltlhawy B, Elmidany T. A three dimensional finite element study for new different knee designs. Trends Biomater Artif Organs. 2017;31(1):9-15.
- Fouda N, Eltlhawy B, El-Midany T. The effect of using PLA-HA coating on uncemented tibia prosthesis to decrease aseptic loosening and stress shielding. Int J Mech Mechatron Eng. 2015;15:76-83.
- Eldesouky I, Harrysson O, West H, Elhofy H. Electron beam melted scaffolds for orthopedic applications. Addit Manuf. 2017;17:169-75. doi: 10.1016/j.addma.2017.08.005.
- Lai Y-S, Chen W-C, Huang C-H, Cheng C-K, et al. The effect of graft strength on knee laxity and graft in-situ forces after posterior cruciate ligament reconstruction. Plos One. 2015;10:11. doi: 10.1371/journal.pone.0127293.
- Gibson LJ. Biomechanics of cellular solids. J Biomech. 2005;38(3):377-99. doi: 10.1016/j.jbiomech.2004.09.027. PubMed PMID: 15652536.
- Wang Y, Arabnejad S, Tanzer M, Pasini D. Hip implant design with three dimensional porous architecture of optimized graded density. J Mech Des. 2018;140(11):111406. doi: 10.1115/1.4041208.
- Eltlhawy B. The effect of changing the shape and material of tibial component on the performance of total knee replacement. Mansoura University; 2016. doi: 10.13140/RG.2.1.5134.0400.
- Shi J. Finite element analysis of total knee replacement considering gait cycle load and malalignment. University of Wolverhampton; 2007. Available from: https://core.ac.uk/download/pdf/1931943.pdf.
- Eldesouky I, Harrysson O, Marcellin-Little DJ, West H, El-Hofy H. Pre-clinical evaluation of the mechanical properties of a low-stiffness cement-injectable hip stem. J Med Eng Technol. 2017;41(8):681-91. doi: 10.1080/03091902.2017.1394391. PubMed PMID: 29111845.
- Li Y, Yang C, Zhao H, Qu S, Li X, Li Y. New Developments of Ti-Based Alloys for Biomedical Applications. Materials (Basel). 2014;7(3):1709-800. doi: 10.3390/ma7031709. PubMed PMID: 28788539. PubMed PMCID: PMC5453259.
- Mangado N, Quevedo C, Lozano L, Suso S, Cerrolaza M. To what extent the combination of stem length and stem inclination do affect the performance of the tibial component in knee implants? Biomedical Engineering: Applications, Basis and Communications; World Scientific; 2015. doi: 10.4015/s1016237215500180.
|