Background: The use of boluses for radiation therapy is very necessary to overcome the problem of sending inhomogeneous doses in the target volume due to irregularities on the surface of the skin. The bolus materials for radiation therapy need to be evaluated. Objective: The present study aims to evaluate some handmade boluses for megavoltage electron and photon radiation therapy. Several dosimetric properties of the synthesized boluses, including relative electron density (RED), transmission factor, mass attenuation coefficient, percentage depth dose (PDD), and percentage surface dose (PSD) were investigated. Material and Methods: In this experimental study, we evaluated natural rubber, silicone rubber mixed either with aluminum or bismuth, paraffin wax, red plasticine, and play-doh as soft tissue equivalent. CT-simulator, in combination with ECLIPSE software, was used to determine bolus density. Meanwhile, Linear Accelerator (Linac) Clinac iX (Varian Medical Systems, Palo Alto), solid water phantom, and Farmer ionization chamber were used to measure and analyze of dosimetric properties. Results: The RED result analysis has proven that all synthesized boluses are equivalent to the density of soft tissue such as fat, breast, lung, and liver. The dosimetric evaluation also shows that all synthesized boluses have a density similar to the density of water and can increase the surface dose with a value ranging from 6-20% for electron energy and 30-50% for photon energy. Conclusion: In general, all synthesized boluses have an excellent opportunity to be used as an alternative tissue substitute in the surface area of the body when using megavoltage electron and photon energy. |
- Khan Y, Villarreal-Barajas JE, Udowicz M, et al. Clinical and Dosimetric Implications of Air Gaps between Bolus and Skin Surface during Radiation Therapy. J Cancer Ther. 2013;4(7):1251-5. doi: 10.4236/jct.2013.47147.
- Park K, Park S, Jeon MJ, Choi J, et al. Clinical application of 3D-printed-step-bolus in post-totalmastectomy electron conformal therapy. Oncotarget. 2017;8(15):25660-8. doi: 10.18632/oncotarget.12829. PubMed PMID: 27784001. PubMed PMCID: PMC5421959.
- Malaescu I, Marin CN, Spunei M. Comparative Study on the Surface Dose of Some Bolus Materials. Int J Med Phys Clin Eng Radiat Oncol. 2015;4(4):348-52. doi: 10.4236/ijmpcero.2015.44041.
- Dipasquale G, Poirier A, Sprunger Y, et al. Improving 3D-printing of megavoltage X-rays radiotherapy bolus with surface-scanner. Radiat Oncol. 2018;13(1):203. doi: 10.1186/s13014-018-1148-1.
- Kudchadker RJ, Antolak JA, Morrison WH, et al. Utilization of custom electron bolus in head and neck radiotherapy. J Appl Clin Med Phys. 2003;4:321-33. doi: 10.1120/jacmp.v4i4.2503.
- Kim MM, Kudchadker RJ, Kanke JE, et al. Bolus electron conformal therapy for the treatment of recurrent inflammatory breast cancer: A case report. Med Dosim. 2012;37(2):208-13. doi: 10.1016/j.meddos.2011.07.004. PubMed PMID: 21978532.
- Supratman AS, Sutanto H, Hidayanto E, et al. Characteristic of natural rubber as bolus material for radiotherapy. Mater Res Express. 2018;5(9):95302. doi: 10.1088/2053-1591/aad5ca.
- Humphries SM, Boyd K, Cornish P, Newman FD. Comparison of super stuff and paraffin wax bolus in radiation therapy of irregular surfaces. Med Dosim. 1996;21(3):155-7. doi: 10.1016/0958-3947(96)00076-3. PubMed PMID: 8899680.
- Günhan B, Kemikler G, Koca A. Determination of surface dose and the effect of bolus to surface dose in electron beams. Med Dosim. 2003;28(3):193-8. doi: 10.1016/S0958-3947(03)00072-4. PubMed PMID: 14563440.
- Kong Y, Yan T, Sun Y, Qian J, Zhou G, Cai S, et al. A dosimetric study on the use of 3D-printed customized boluses in photon therapy: A hydrogel and silica gel study. J Appl Clin Med Phys. 2019;20(1):348-55. doi: 10.1002/acm2.12489. PubMed PMID: 30402935. PubMed PMCID: PMC6333182.
- Butson MJ, Cheung T, Yu P, Metcalfe P. Effects on skin dose from unwanted air gaps under bolus in photon beam radiotherapy. Radiat Meas. 2000;32(3):201-4. doi: 10.1016/S1350-4487(99)00276-0.
- Jaya GW, Sutanto H. Fabrication and characterization of bolus material using polydimethyl-siloxane. Mater Res Express. 2018;5(1):15307. doi: 10.1088/2053-1591/aaa447.
- Vyas V, Palmer L, Mudge R, Jiang R, et al. On bolus for megavoltage photon and electron radiation therapy. Med Dosim. 2013;38:268-73. doi: 10.1016/j.meddos.2013.02.007. PubMed PMID: 23582702.
- Sutanto H, Marhaendrajaya I, Jaya GW, et al. The Properties of Bolus Material using Silicone Rubber. IOP Conference Series: Materials Science and Engineering, 3rd Materials Research Society of Indonesia Meeting (MRS-Id 2018); Bali, Indonesia: IOP Publishing; 2018.
- Rancangkapti N, Hariyanto AP, Mariyam FU, et al. Dosimetry analysis of homemade bolus using propylene glycol for photon MegaVoltage and electron radiation therapy. Journal of Physics: Conference Series. 2019;1248:1-6.
- Huang K-M, Hsu C-H, Jeng S-C, Ting L-L, et al. The application of Aquaplast Thermoplastic as a bolus material in the radiotherapy of a patient with classic Kaposi’s sarcoma at the lower extremity. Anticancer Res. 2006;26(1B):759-62. PubMed PMID: 16739350.
- Adamson JD, Cooney T, Demehri F, et al. Characterization of Water-Clear Polymeric Gels for Use as Radiotherapy Bolus. Technol Cancer Res Treat. 2017;16(6):923-9. doi: 10.1177/1533034617710579. PubMed PMID: 28554255. PubMed PMCID: PMC5762050.
- Visscher S, Barnett E. Comparison of Bolus Materials to Highly Absorbent Polypropylene and Rayon Cloth. J Med Imaging Radiat Sci. 2017;48(1):55-60. doi: 10.1016/j.jmir.2016.08.003. PubMed PMID: 31047211.
- Barnett E, Le K, Surendra V, Visscher S, Wong J. Comparison of Bolus Materials vs Highly Absorbent Polypropylene and Rayon Cloth. J Med Imaging Radiat Sci. 2015;46(1):S19-S. doi: 10.1016/j.jmir.2015.01.061. PubMed PMID: 31047211.
- Seppälä T, Collan J, Auterinen I, Serén T, et al. A dosimetric study on the use of bolus materials for treatment of superficial tumors with BNCT. Appl Radiat Isot. 2004;61(5):787-91. doi: 10.1016/j.apradiso.2004.05.054. PubMed PMID: 15308145.
- Nagata K, Lattimer JC, March JS. The electron beam attenuating properties of superflab, play-doh, and wet gauze, compared to plastic water. Vet Radiol Ultrasound. 2012;53(1):96-100. doi: 10.1111/j.1740-8261.2011.01866.x. PubMed PMID: 22092982.
- Segura T, Burillo G. Radiation modification of silicone rubber with glycidylmethacrylate. Radiat Phys Chem. 2013;91:101-7. doi: 10.1016/j.radphyschem.2013.06.011.
- Rahimi A, Mashak A. Review on rubbers in medicine: Natural, silicone and polyurethane rubbers. Plast Rubber Compos. 2013;42:223-30. doi: 10.1179/1743289811Y.0000000063.
- Montaseri A, Alinaghizadeh M, Mahdavi SR. Physical properties of ethyl methacrylate as a bolus in radiotherapy. Iran J Med Phy. 2012;9(2A):127-34. doi: 10.22038/ijmp.2012.318.
- IAEA. Dosimetry and Medical Radiation Physics Section. News IAEA TRS 398; Vienna, Austria: IAEA; 2006.
- Tagoe SNA, Mensah SY, Fletcher JJ, Sasu E. Telecobalt machine beam intensity modulation with aluminium compensating filter using missing tissue approach. Iranian Journal of Medical Physics. 2018;15(1):48-61. doi: 10.22038/ijmp.2017.23548.1253.
- Hariyanto AP, Mariyam F, Almira L, Endarko E, Bambang S. Fabrication and Characterization of Bolus Material Using Propylene Glycol for Radiation Therapy. Iranian Journal of Medical Physics. 2020;17(3):161-9. doi: 10.22038/IJMP.2019.39798.1537.
- Khan FM, Gibbons JP. The Physics of Radiation Therapy, 5 ed. USA: Lippincott Williams & Wilkins, a Wolters Kluwer business; 2014.
- Saw CB, Loper A, Komanduri K, Combine T, et al. Determination of CT-to-density conversion relationship for image-based treatment planning systems. Medical Dosim. 2005;30(3):145-8. doi: 10.1016/j.meddos.2005.05.001. PubMed PMID: 16112465.
- Binti F, Lothfy A. Durian Seed as a Potential Substrate for Bolus in Radiotherapy. Universiti Sains Malaysia; 2015.
- Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BoneKEy Report. 2013;2(447):1 - 11. doi: 10.1038/bonekey.2013.181.
- ICRU. Tissue substitutes in radiation dosimetry and measurement: International Commission on Radiation Units and Measurements. ICRU (Report 44); 1989.
- Walker M, Cohen N, Menchaca D. Play-Doh® and water-soaked gauze sponges as alternative bolus material for cobalt-60 teletherapy. Vet Radiol Ultrasound. 2005;46(2):179-81. doi: 10.1111/j.1740-8261.2005.00033.x. PubMed PMID: 15869164.
- Podgorsak EB. Radiation Oncology Physics: A Handbook for Teachers and Students. Austria: IAEA; 2005.
- Navitha M, Nigam J, Silambarasan NS, Kumar P, Kumar P. Comparison of Electron Beam Transmission of Different Energies with Two Different Block Materials at Different Placement Positions within The Applicator. SRMS J Med Sci. 2016;1(2).
- Kim SJ, Lee SJ, Moon SH, Seol KH, Lee JE. Characteristics of Photon Beam through a Handmade Build-Up Modifier as a Substitute of a Bolus. Prog Med Phys. 2014;25(4):225. doi: 10.14316/pmp.2014.25.4.225.
- Paliwal BR, Rommelfanger S, Das RK. Attenuation characteristics of a new compensator material: Thermo-Shield for high energy electron and photon beams. Med Phys. 1998;25(4):484-7. doi: 10.1118/1.598223.
- Tanir AG, Ketenci FS, Bölükdemir MH. Usage of attenuation coeffcients of some tissue-equivalent materials. Turk J Phys. 2015;39(1):69-74. doi: 10.3906/fiz-1406-10.
- James Tremethick L. Characterisation of Dosimetry in Electron Radiotherapy under different Bolus Applications. Australia: RMIT University; 2012.
- Park JW, Oh SA, Yea JW, Kang MK. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner. PLoS One. 2017;12(5). doi: 10.1371/journal.pone.0177562.
- Sroka M, Reguła J, ŁObodziec W. The influence of the bolus-surface distance on the dose distribution in the build-up region. Rep Prac Oncol Radiother. 2010;15(6):161-4. doi: 10.1016/j.rpor.2010.09.003.
- Chung JB, Kim JS, Kim IA, Lee JW. Surface dose measurements from air gaps under a bolus by using a MOSFET dosimeter in clinical oblique photon beams. J Korean Phys Soc. 2012;61(7):1143-7. doi: 10.3938/jkps.61.1143.
|