- Asl BM, Setarehdan SK, Mohebbi M. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif Intell Med. 2008;44(1):51-64. doi: 10.1016/j.artmed.2008.04.007. PubMed PMID: 18585905.
- Chan AD, Hamdy MM, Badre A, Badee V. Wavelet distance measure for person identification using electrocardiograms. IEEE Trans Instrum Meas. 2008;57(2):248-53. doi: 10.1109/TIM.2007.909996.
- Kadish AH, Buxton AE, Kennedy HL, et al. ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography: A report of the ACC/AHA/ACP–ASIM Task Force on Clinical Competence (ACC/AHA Committee to Develop a Clinical Competence Statement on Electrocardiography and Ambulatory Electrocardiography) Endorsed by the International Society for Holter and Noninvasive Electrocardiology. J Am Coll Cardiol. 2001;38(7):2091-100. doi: 10.1161/circ.104.25.3169. PubMed PMID: 11748119.
- Acharya UR, Joseph KP, Kannathal N, et al. Heart rate variability: a review. Med Biol Eng Comput. 2006;44(12):1031-51. doi: 10.1007/s11517-006-0119-0. PubMed PMID: 17111118.
- Chang RC, Lin CH, Wei MF, Lin KH, Chen SR. High-precision real-time premature ventricular contraction (PVC) detection system based on wavelet transform. J Signal Process Syst. 2014;77(3):289-96. doi: 10.1007/s11265-013-0823-6.
- Jung Y, Kim H. Detection of PVC by using a wavelet-based statistical ECG monitoring procedure. Biomed Signal Process Control. 2017;36:176-82. doi:10.1016/j.bspc.2017.03.023.
- Zarei R, He J, Huang G, Zhang Y. Effective and efficient detection of premature ventricular contractions based on variation of principal directions. Digit Signal Process. 2016;50:93-102. doi: 10.1016/j.dsp.2015.12.002.
- Zhou FY, Jin LP, Dong J. Premature ventricular contraction detection combining deep neural networks and rules inference. Artif Intell Med. 2017;79:42-51. doi: 10.1016/j.artmed.2017.06.004. PubMed PMID: 28662816.
- Mane RS, Cheeran AN, Awandekar VD, Rani P. Cardiac arrhythmia detection by ecg feature extraction. Int J Eng Res Appl. 2013;3(2):327-32.
- Lek-uthai A, Ittatirut S, Teeramongkonrasmee A. Algorithm development for real-time detection of premature ventricular contraction. TENCON 2014 - IEEE Region 10 Conference; Bangkok, Thailand: IEEE; 2014. p. 1-5. doi: 10.1109/TENCON.2014.7022418.
- Manikandan MS, Ramkumar B, Deshpande PS, Choudhary T. Robust detection of premature ventricular contractions using sparse signal decomposition and temporal features. Healthcare Technology Letters. 2015;2(6):141-8. doi: 10.1049/htl.2015.0006. PubMed PMID: 26713158. PubMed PMCID: PMC4678438.
- Cuesta P, Lado MJ, Vila XA, Alonso R. Detection of premature ventricular contractions using the RR-interval signal: a simple algorithm for mobile devices. Technol Health Care. 2014;22(4):651-6. doi: 10.3233/THC-140818. PubMed PMID: 24898863.
- Shyu LY, Wu YH, Hu W. Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Trans Biomed Eng. 2004;51(7):1269-73. doi: 10.1109/TBME.2004.824131. PubMed PMID: 15248543.
- Alajlan N, Bazi Y, Melgani F, Malek S, Bencherif MA. Detection of premature ventricular contraction arrhythmias in electrocardiogram signals with kernel methods. Signal Image Video Process. 2014;8(5):931-42. doi: 10.1007/s11760-012-0339-8.
- Gutiérrez-Gnecchi JA, Morfin-Magaña R, Lorias-Espinoza D, et al. DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomed Signal Process Control. 2017;32:44-56. doi: 10.1016/j.bspc.2016.10.005.
- Zhao L, Wiggins M, Vachtsevanos G. Premature ventricular contraction beat detection based on symbolic dynamics analysis. International Conference CIRCUITS, SIGNALS AND SYSTEMS; Cancun, Mexico: IASTED; 2003. p. 48-50.
- Nahar S, Bin Munir MS. Automatic detection of premature ventricular contraction beat using morphological transformation and cross-correlation. 3rd International Conference on Signal Processing and Communication Systems; Omaha, NE, USA: IEEE; 2009. p. 1-4. doi: 10.1109/ICSPCS.2009.5306426.
- Mazidi MH, Eshghi M, Raoufy MR. Detection of premature ventricular contraction (PVC) using linear and nonlinear techniques: an experimental study. Cluster Comput. 2019:1-6. doi: 10.1007/s10586-019-02953-x.
- Patidar S, Pachori RB, Upadhyay A, Acharya UR. An integrated alcoholic index using tunable-Q wavelet transform based features extracted from EEG signals for diagnosis of alcoholism. Appl Soft Comput. 2017;50:71-8. doi: 10.1016/j.asoc.2016.11.002.
- Suppappola S, Sun Y, Chiaramida SA. Gaussian pulse decomposition: an intuitive model of electrocardiogram waveforms. Ann Biomed Eng. 1997;25(2):252-60. doi: 10.1007/BF02648039. PubMed PMID: 9084830.
- AAMI. Testing and reporting performance results of ventricular arrhythmia detection algorithms. ANSI/AAMI EC57:1998/(R)2003, United States: Association for the Advancement of Medical Instrumentation; 1986.
- Clifford GD, Azuaje F, Mcsharry P. Advanced methods and tools for ECG data analysis, Chapter 3: ECG Statistics, Noise, Artifacts, and Missing Data. Clifford Lab; 2006. p. 18.
- Thakor NV, Webster JG, Tompkins WJ. Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans Biomed Eng. 1984;31(11):702-6. doi: 10.1109/TBME.1984.325393. PubMed PMID: 6500590.
- Selesnick IW. Wavelet transform with tunable Q-factor. IEEE Trans Signal Process. 2011;59(8):3560-75. doi: 10.1109/TSP.2011.2143711.
- Patidar S, Pachori RB. Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform. Biomed Signal Process Control. 2013;8(6):559-67. doi: 10.1016/j.bspc.2013.05.004.
- Patidar S, Pachori RB, Acharya UR. Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals. Knowl-Based Syst. 2015;82:1-10. doi: 10.1016/j.knosys.2015.02.011.
- Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985;32(3):230-6. doi: 10.1109/TBME.1985.325532. PubMed PMID: 3997178.
- Sharma P, Ray KC. Efficient methodology for electrocardiogram beat classification. IET Signal Processing. 2016;10(7):825-32. doi: 10.1049/iet-spr.2015.0274.
- Faul F, Erdfelder E, Lang AG, Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-91. doi: 10.3758/BF03193146.
- Homaeinezhad MR, Atyabi SA, Tavakkoli E, Toosi HN, Ghaffari A, Ebrahimpour R. ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst Appl. 2012;39(2):2047-58. doi: 10.1016/j.eswa.2011.08.025.
- Mazidi MH, Eshghi M. Detection of Heart Attack using Cross Wavelet Transformation and Support Vector Machine. Appl Med Inform. 2019;41(3):77-92.
- Özbay Y, Ceylan R, Karlik B. Integration of type-2 fuzzy clustering and wavelet transform in a neural network based ECG classifier. Expert Syst Appl. 2011;38(1):1004-10. doi: 10.1016/j.eswa.2010.07.118.
|