- McFarland DJ, Wolpaw JR. Brain-computer interface operation of robotic and prosthetic devices. Computer. 2008;41(10):52-56. doi: 10.1109/MC.2008.409.
- Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002;113(6):767-91. doi: 10.1016/s1388-2457(02)00057-3. PubMed PMID: 12048038.
- Finke A, Lenhardt A, Ritter H. The MindGame: a P300-based brain-computer interface game. Neural Netw. 2009;22(9):1329-33. doi: 10.1016/j.neunet.2009.07.003. PubMed PMID: 19635654.
- Millán Jdel R, Renkens F, Mouriño J, Gerstner W. Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng. 2004;51(6):1026-33. doi: 10.1109/TBME.2004.827086. PubMed PMID: 15188874.
- Shalbaf A, Saffar M, Sleigh JW, Shalbaf R. Monitoring the Depth of Anesthesia Using a New Adaptive Neurofuzzy System. IEEE J Biomed Health Inform. 2018;22(3):671-77. doi: 10.1109/JBHI.2017.2709841. PubMed PMID: 28574372.
- Afshani F, Shalbaf A, Shalbaf R, Sleigh J. Frontal-temporal functional connectivity of EEG signal by standardized permutation mutual information during anesthesia. Cogn Neurodyn. 2019;13(6):531-40. doi: 10.1007/s11571-019-09553-w. PubMed PMID: 31741690. PubMed PMCID: PMC6825117.
- Shalbaf A, Shalbaf R, Saffar M, Sleigh J. Monitoring the level of hypnosis using a hierarchical SVM system. J Clin Monit Comput. 2020;34(2):331-8. doi: 10.1007/s10877-019-00311-1. PubMed PMID: 30982945.
- Kim C, Sun J, Liu D, Wang Q, Paek S. An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI. Med Biol Eng Comput. 2018;56(9):1645-58. doi: 10.1007/s11517-017-1761-4. PubMed PMID: 29497931.
- Bascil MS, Tesneli AY, Temurtas F. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN. Australas Phys Eng Sci Med. 2016;39(3):665-76. doi: 10.1007/s13246-016-0462-x. PubMed PMID: 27376723.
- Athif M, Ren H. WaveCSP: a robust motor imagery classifier for consumer EEG devices. Australas Phys Eng Sci Med. 2019;42(1):159-168. doi: 10.1007/s13246-019-00721-0. PubMed PMID: 30671723.
- Shalbaf A, Maghsoudi A. Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection from EEG Signals. Basic and Clinical Neuroscience. 2020.
- Mahmoudi M, Shamsi M. Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information. Australas Phys Eng Sci Med. 2018;41(4):957-72. doi: 10.1007/s13246-018-0691-2. PubMed PMID: 30338495.
- Park SH, Lee D, Lee SG. Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification. IEEE Trans Neural Syst Rehabil Eng. 2018;26(2):498-505. doi: 10.1109/TNSRE.2017.2757519. PubMed PMID: 28961119.
- Shin Y, Lee S, Lee J, Lee HN. Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems. J Neural Eng. 2012;9(5):056002. doi: 10.1088/1741-2560/9/5/056002. PubMed PMID: 22872668.
- Sreeja SR, Samanta D, Sarma M. Weighted sparse representation for classification of motor imagery EEG signals. 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Berlin, Germany: IEEE; 2019. p. 6180-3.
- Sun HW, Fu YF, Xiong X, Yang J, Liu CW, Yu ZT. Identication of EEG induced by motor imagery based on Hilbert Huang transform. Acta Automatica Sinica. 2015;41(9):1686-92.
- Park C, Looney D, Naveed R, Ahrabian A, Mandic DP. Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Trans Neural Syst Rehabil Eng. 2013;21(1):10-22. doi: 10.1109/TNSRE.2012.2229296. PubMed PMID: 23204288.
- Zheng Y, Xu G. Quantifying mode mixing and leakage in multivariate empirical mode decomposition and application in motor imagery-based brain-computer interface system. Med Biol Eng Comput. 2019;57(6):1297-311. doi: 10.1007/s11517-019-01960-9. PubMed PMID: 30737625.
- Boostani R, Moradi MH. A new approach in the BCI research based on fractal dimension as feature and Adaboost as classifier. J Neural Eng. 2004;1(4):212-7. doi: 10.1088/1741-2560/1/4/004. PubMed PMID: 15876641.
- Rodríguez-Bermúdez G, García-Laencina PJ. Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces. J Med Syst. 2012;36(1):S51-63. doi: 10.1007/s10916-012-9893-4. PubMed PMID: 23117792.
- Lang EW, Tomé AM, Keck IR, Górriz-Sáez JM, Puntonet CG. Brain connectivity analysis: a short survey. Comput Intell Neurosci. 2012:1-21. doi: 10.1155/2012/412512. PubMed PMID: 23097663. PubMed PMCID: PMC3477528.
- Seth AK. A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods. 2010;186(2):262-73. doi: 10.1016/j.jneumeth.2009.11.020. PubMed PMID: 19961876.
- García-Laencina PJ, Rodríguez-Bermudez G, Roca-Dorda J. Exploring dimensionality reduction of EEG features in motor imagery task classification. Expert Syst Appl. 2014;41(11):5285-95. doi: 10.1016/j.eswa.2014.02.043.
- Ince NF, Arica S, Tewfik A. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings. J Neural Eng. 2006;3(3):235-44. doi: 10.1088/1741-2560/3/3/006. PubMed PMID: 16921207.
- Ruan J, Wu X, Zhou B, Guo X, Lv Z. An Automatic Channel Selection Approach for ICA-Based Motor Imagery Brain Computer Interface. J Med Syst. 2018;42(12):253. doi: 10.1007/s10916-018-1106-3. PubMed PMID: 30402801.
- Asensio-Cubero J, Gan JQ, Palaniappan R. Multiresolution analysis over graphs for a motor imagery based online BCI game. Comput Biol Med. 2016;68:21-6. doi: 10.1016/j.compbiomed.2015.10.016. PubMed PMID: 26599827.
- Bhattacharyya S, Sengupta A, Chakraborti T, Konar A, Tibarewala DN. Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata. Med Biol Eng Comput. 2014;52(2):131-9. doi: 10.1007/s11517-013-1123-9. PubMed PMID: 24165805.
- Miao M, Wang A, Liu F. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition. Med Biol Eng Comput. 2017;55(9):1589-603. doi: 10.1007/s11517-017-1622-1. PubMed PMID: 28161876.
- Kirar JS, Agrawal RK. Relevant Feature Selection from a Combination of Spectral-Temporal and Spatial Features for Classification of Motor Imagery EEG. J Med Syst. 2018;42(5):78. doi: 10.1007/s10916-018-0931-8. PubMed PMID: 29546648.
- Schlögl A, Lee F, Bischof H, Pfurtscheller G. Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neural Eng. 2005;2(4):L14-22. doi: 10.1088/1741-2560/2/4/L02. PubMed PMID: 16317224.
- Subasi A, Erçelebi E. Classification of EEG signals using neural network and logistic regression. Comput Methods Programs Biomed. 2005;78(2):87-99. doi: 10.1016/j.cmpb.2004.10.009. PubMed PMID: 15848265.
- Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng. 2007;4(2):R1-13. doi: 10.1088/1741-2560/4/2/R01. PubMed PMID: 17409472.
- Gupta G, Bhatnagar M, Ghosh S, Sinha R. Design of control system for motor imagery based neuro-aid application. Biomed Eng Appl Basis Commun. 2019;31(04):1950031. doi: 10.4015/S1016237219500315.
- Arvaneh M, Guan C, Ang KK, Quek C. Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng. 2011;58(6):1865-73. doi: 10.1109/TBME.2011.2131142. PubMed PMID: 21427014.
- Siuly S, Li Y. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface. IEEE Trans Neural Syst Rehabil Eng. 2012;20(4):526-38. doi: 10.1109/TNSRE.2012.2184838. PubMed PMID: 22287252.
- Al-Faiz MZ, Al-hamadani AA. Implementation of EEG signal processing and decoding for two-class motor imagery data. Biomed Eng Appl Basis Commun. 2019;31(04):1950028. doi: 10.4015/S1016237219500285.
- Rodrigues PG, Filho CAS, Attux R, Castellano G, Soriano DC. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces. Med Biol Eng Comput. 2019;57(8):1709-25. doi: 10.1007/s11517-019-01989-w. PubMed PMID: 31127535.
- He L, Hu D, Wan M, Wen Y, Von Deneen KM, Zhou M. Common Bayesian network for classification of EEG-based multiclass motor imagery BCI. IEEE Trans Syst Man Cybern Syst. 2015;46(6):843-54. doi: 10.1109/TSMC.2015.2450680.
- Sinha RK, Ghosh S. Jaya based ANFIS for monitoring of two class motor imagery task. IEEE Access. 2016;4:9273-82. doi: 10.1109/ACCESS.2016.2637401.
- Jafarifarmand A, Badamchizadeh MA, Khanmohammadi S, Nazari MA, Tazehkand BM. A New Self-Regulated Neuro-Fuzzy Framework for Classification of EEG Signals in Motor Imagery BCI. IEEE Trans Fuzzy Syst. 2017;26(3):1485-97. doi: 10.1109/TFUZZ.2017.2728521.
- Hsu WY. Enhancing the performance of motor imagery EEG classification using phase features. Clin EEG Neurosci. 2015;46(2):113-8. doi: 10.1177/1550059414555123. PubMed PMID: 25404753.
- Miao M, Zeng H, Wang A, Zhao C, Liu F. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach. J Neurosci Methods. 2017;278:13-24. doi: 10.1016/j.jneumeth.2016.12.010. PubMed PMID: 28012854.
- Jin Z, Zhou G, Gao D, Zhang Y. EEG classification using sparse Bayesian extreme learning machine for brain computer interface. Neural Comput Appl. 2018;32(11):1-9. doi: 10.1007/s00521-018-3735-3.
- Jiao Y, Zhang Y, Chen X, Yin E, Jin J, Wang X, Cichocki A. Sparse Group Representation Model for Motor Imagery EEG Classification. IEEE J Biomed Health Inform. 2019;23(2):631-41. doi: 10.1109/JBHI.2018.2832538. PubMed PMID: 29994055.
- Tabar YR, Halici U. A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng. 2017;14(1):016003. doi: 10.1088/1741-2560/14/1/016003. PubMed PMID: 27900952.
- Lu N, Li T, Ren X, Miao H. A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines. IEEE Trans Neural Syst Rehabil Eng. 2017;25(6):566-76. doi: 10.1109/TNSRE.2016.2601240. PubMed PMID: 27542114.
- Zhang Z, Duan F, Sole-Casals J, Dinares-Ferran J, Cichocki A, Yang Z, Sun Z. A novel deep learning approach with data augmentation to classify motor imagery signals. IEEE Access. 2019;7:15945-54. doi: 10.1109/ACCESS.2019.2895133.
- Shin J, von Luhmann A, Blankertz B, Kim DW, Jeong J, Hwang HJ, Muller KR. Open Access Dataset for EEG+NIRS Single-Trial Classification. IEEE Trans Neural Syst Rehabil Eng. 2017;25(10):1735-45. doi: 10.1109/TNSRE.2016.2628057. PubMed PMID: 28113943.
- Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccala LA, De Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Ding L, Edgar JC, Miller GA, He B, Babiloni F. Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Hum Brain Mapp. 2007;28(2):143-57. doi: 10.1002/hbm.20263. PubMed PMID: 16761264. PubMed PMCID: PMC6871398.
- Granger CW. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969;37:424-38.
- Geweke JF. Measures of conditional linear dependence and feedback between time series. J Am Stat Assoc. 1984;79(388):907-15. doi: 10.1080/01621459.1984.10477110.
- Baccalá LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biol Cybern. 2001;84(6):463-74. doi: 10.1007/PL00007990. PubMed PMID: 11417058.
- Baccala LA, Sameshima K, Takahashi DY. Generalized partial directed coherence in Digital Signal Processing. 15th International Conference on Digital Signal Processing; Cardiff, UK: IEEE; 2007. p. 163-6. doi: 10.1109/ICDSP.2007.4288544.
- Korzeniewska A, Mańczak M, Kamiński M, Blinowska KJ, Kasicki S. Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. J Neurosci Methods. 2003;125(1-2):195-207. doi: 10.1016/s0165-0270(03)00052-9. PubMed PMID: 12763246.
- Kamiński M, Ding M, Truccolo WA, Bressler SL. Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance. Biol Cybern. 2001;85(2):145-57. doi: 10.1007/s004220000235. PubMed PMID: 11508777.
- Mullen T, Delorme A, Kothe C, Makeig S. An electrophysiological information flow toolbox for EEGLAB. San Diego: University of California; 2010.
- Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9-21. doi: 10.1016/j.jneumeth.2003.10.009. PubMed PMID: 15102499.
- Spurrier JD. On the null distribution of the Kruskal–Wallis statistic. Nonparametric Statistics. 2003;15(6):685-91. doi: 10.1080/10485250310001634719.
- Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol. 2005;3(2):185-205. doi: 10.1142/s0219720005001004. PubMed PMID: 15852500.
- Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27(8):1226-38. doi: 10.1109/TPAMI.2005.159. PubMed PMID: 16119262.
- Bertsekas DP. Nonlinear programming. Journal of the Operational Research Society. 1997;48(3):334. doi: 10.1057/palgrave.jors.2600425.
- Neuper C, Pfurtscheller G. Evidence for distinct beta resonance frequencies in human EEG related to specific sensorimotor cortical areas. Clin Neurophysiol. 2001;112(11):2084-97. doi: 10.1016/s1388-2457(01)00661-7. PubMed PMID: 11682347.
- Wolpaw JR, McFarland DJ, Vaughan TM. Brain-computer interface research at the Wadsworth Center. IEEE Trans Rehabil Eng. 2000;8(2):222-6. doi: 10.1109/86.847823. PubMed PMID: 10896194.
|