- Esmaeili M, Dehnavi AM, Rabbani H. 3D curvelet-based segmentation and quantification of drusen in optical coherence tomography images. J Electr Comput Eng. 2017;2017:12. doi: 10.1155/2017/4362603.
- Esmaeili M, Dehnavi AM, Rabbani H, Hajizadeh F. Speckle noise reduction in optical coherence tomography using two-dimensional curvelet-based dictionary learning. J Med Signals Sens. 2017;7(2):86. PubMed PMID: 28553581. PubMed PMCID: PMC5437767.
- Mahsa P, Seyed Hossein R, Alireza J. Automatic detection of retinal exudates in fundus images of diabetic retinopathy patients. J Anal Res Clin Med. 2016;4(2):104-9. doi: 10.15171/jarcm.2016.017.
- Rasta SH, Nikfarjam S, Javadzadeh A. Detection of retinal capillary nonperfusion in fundus fluorescein angiogram of diabetic retinopathy. BioImpacts. 2015;5(4):183. doi: 10.15171/bi.2015.27. PubMed PMID: 26929922. PubMed PMCID: PMC4769788.
- Rasta SH, Partovi ME, Seyedarabi H, Javadzadeh A. A comparative study on preprocessing techniques in diabetic retinopathy retinal images: illumination correction and contrast enhancement. J Med Signals Sens. 2015;5(1):40. PubMed PMID: 25709940. PubMed PMCID: PMC4335144.
- Alonso-Caneiro D, Read SA, Collins MJ. Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed Opt Express. 2013;4(2):2795-812. doi: 10.1364/BOE.4.002795. PubMed PMID: 24409381. PubMed PMCID: PMC3862153.
- Duan L, Hong YJ, Yasuno Y. Automated segmentation and characterization of choroidal vessels in high-penetration optical coherence tomography. Opt Express. 2013;21(13):15787-808. doi: 10.1364/OE.21.015787. PubMed PMID: 23842365.
- Danesh H, Kafieh R, Rabbani H, Hajizadeh F. Segmentation of choroidal boundary in enhanced depth imaging OCTs using a multiresolution texture based modeling in graph cuts. Comput Math Methods Med. 2014;2014:1-9. doi: 10.1155/2014/479268. PubMed PMID: 24672579. PubMed PMCID: PMC3942333.
- Sui X, Zheng Y, Wei B, Bi H, Wu J, Pan X, Yin Y, Zhang S.Choroid segmentation from optical coherence tomography with graph-edge weights learned from deep convolutional neural networks. Neurocomputing. 2017;237:332-41. doi: j.neucom.2017.01.023.
- Leitgeb R, Hitzenberger CK, Fercher AF. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2003;11(8):889-94. doi: 10.1364/OE.11.000889. PubMed PMID: 19461802.
- Hussain MA, Bhuiyan A, Ishikawa H, Smith RT, Schuman JS, Kotagiri R. An automated method for choroidal thickness measurement from Enhanced Depth Imaging Optical Coherence Tomography images. Comput Med Imaging and Graph. 2018;63:41-51. doi: 10.1016/j.compmedimag.2018.01.001.
- Lu H, Boonarpha N, Kwong MT, Zheng Y. Automated segmentation of the choroid in retinal optical coherence tomography images. 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka, Japan: EEE; 2013. p. 5869-72. doi: 10.1109/EMBC.2013.6610887.
- Tian J, Marziliano P, Baskaran M, Tun TA, Aung T. Automatic measurements of choroidal thickness in EDI-OCT images. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5360-3. doi: 10.1109/EMBC.2012.6347205. PubMed PMID: 23367140.
- Wu L, Alpizar-Alvarez N. Choroidal imaging by spectral domain-optical coherence tomography. Taiwan J Ophthalmol. 2013;3(1):3-13. doi: 10.1016/j.tjo.2013.01.003.
- Manjunath V, Taha M, Fujimoto JG, Duker JS. Choroidal Thickness in Normal Eyes Measured Using Cirrus HD Optical Coherence Tomography. Am J Ophthalmol. 2010;150(3):325-9. doi: 10.1016/j.ajo.2010.04.018. PubMed PMID: 20591395. PubMed PMCID: PMC2926223.
- Margolis R, Spaide RF. A Pilot Study of Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Normal Eyes. Am Journal of Ophthalmology. 2009;147(5):811-5. doi: 10.1016/j.ajo.2008.12.008. PubMed PMID: 19232559.
- Ouyang Y, Heussen FM, Mokwa N, Walsh AC, et al. Spatial Distribution of Posterior Pole Choroidal Thickness by Spectral Domain Optical Coherence Tomography. Investig Ophthalmol Vis Sci. 2011;52(9):7019-26. doi: 10.1167/iovs.11-8046. PubMed PMID: 21810980. PubMed PMCID: PMC3176017.
- Usui S, Ikuno Y, Miki A, Matsushita K, Yasuno Y, Nishida K. Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma. Am J Ophthalmol. 2012;153(1):10-6.e1. doi: 10.1016/j.ajo.2011.05.037. PubMed PMID: 21864827.
- Broekhuyse RM. The lipid composition of aging sclera and cornea. Ophthalmologica. 1975;171(1):82-5. doi: 10.1159/000307448. PubMed PMID: 1124206.
- Friedman E. A hemodynamic model of the pathogenesis of age-related macular degeneration. Am J Ophthalmol. 1997;124(5):677-82. doi: 10.1016/s0002-9394(14)70906-7. PubMed PMID: 9372722.
- Chung SE, Kang SW, Lee JH, Kim YT. Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology. 2011;118(5):840-5. doi: 10.1016/j.ophtha.2010.09.012. PubMed PMID: 21211846.
- Wood A, Binns A, Margrain T, Drexler W, Považay B, Esmaeelpour M, Sheen N. Retinal and choroidal thickness in early age-related macular degeneration. Am J Ophthalmol. 2011;152(6):1030-8. doi: 10.1016/j.ajo.2011.05.021. PubMed PMID: 21851922.
- Manjunath V, Goren J, Fujimoto JG, Duker JS. Analysis of Choroidal Thickness in Age-Related Macular Degeneration Using Spectral-Domain Optical Coherence Tomography. Am J Ophthalmol. 2011;152(4):663-8. doi: 10.1016/j.ajo.2011.03.008. PubMed PMID: 21708378. PubMed PMCID: PMC3375176.
- Hidayat AA, Fine BS. Diabetic choroidopathy. Light and electron microscopic observations of seven cases. Ophthalmology. 1985;92(4):512-22. PubMed PMID: 2582331.
- Esmaeelpour M, Brunner S, Ansari-Shahrezaei S, Nemetz S, et al. Choroidal thinning in diabetes type 1 detected by 3-dimensional 1060 nm optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(11):6803-9. doi: 10.1167/iovs.12-10314. PubMed PMID: 22952126.
- Esmaeelpour M, Považay B, Hermann B, Hofer B, et al. Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):5311-6. doi: 10.1167/iovs.10-6875. PubMed PMID: 21508108.
- Querques G, Lattanzio R, Querques L, Del Turco C, et al. Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci. 2012;53(10):6017-24. doi: 10.1167/iovs.12-9692. PubMed PMID: 22879414.
- Regatieri CV, Branchini L, Carmody J, Fujimoto JG, Duker JS. Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina. 2012;32(3):563-8. doi: 10.1097/IAE.0b013e31822f5678. PubMed PMID: 22374157. PubMed PMCID: PMC3393081.
- Vujosevic S, Martini F, Cavarzeran F, Pilotto E, Midena E. Macular and peripapillary choroidal thickness in diabetic patients. Retina. 2012;32(9):1781-90. doi: 10.1097/IAE.0b013e31825db73d. PubMed PMID: 22869022.
- Nagaoka T, Kitaya N, Sugawara R, Yokota H, Mori F, Hikichi T, Fujio N, Yoshida A. Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol. 2004;88(8):1060-3. doi: 10.1136/bjo.2003.035345. PubMed PMID: 15258025. PubMed PMCID: PMC1772269.
- Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM. Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;152(1):87-95.el. doi: 10.1016/j.ajo.2011.01.024. PubMed PMID: 21570046.
- Park SC, De Moraes CG, Teng CC, et al. Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Ophthalmology. 2012;119(1):3-9. doi: 10.1016/j.ophtha.2011.07.012. PubMed PMID: 21978593.
- Lee EJ, Kim TW, Weinreb RN, Suh MH, Kim H. Lamina cribrosa thickness is not correlated with central corneal thickness or axial length in healthy eyes: central corneal thickness, axial length, and lamina cribrosa thickness. Graefes Arch Clin Exp Ophthalmol. 2013;251(3):847-54. doi: 10.1007/s00417-012-2145-y. PubMed PMID: 22990581.
- Park HY, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology. 2012:119(1):10-20. doi: 10.1016/j.ophtha.2011.07.033. PubMed PMID: 22015382.
- Guyer DR, Yannuzzi LA, Slakter JS, Sorenson JA, Ho A, Orlock D. Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol. 1994;112(8):1057-62. doi: 10.1001/archopht.1994.01090200063023. PubMed PMID: 8053819.
- Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29(10):1469-73. doi: 10.1097/IAE.0b013e3181be0a83. PubMed PMID: 19898183.
- Jirarattanasopa P, Ooto S, Tsujikawa A, Yamashiro K, et al. Assessment of macular choroidal thickness by optical coherence tomography and angiographic changes in central serous chorioretinopathy. Ophthalmology. 2012;119(8):1666-78. doi: 10.1016/j.ophtha.2012.02.021. PubMed PMID: 22521082.
- Manjunath V, Fujimoto JG, Duker JS. Evaluation of Choroidal Thickness in Central Serous Chorioretinopathy Using Cirrus HD Optical Coherence Tomography. Retina. 2010;30(8):1320-1. doi: 10.1097/IAE.0b013e3181e798b1. PubMed PMID: 20827146. PubMed PMCID: PMC3355199.
- Maruko I, Iida T, Sugano Y, Ojima A, Ogasawara M, Spaide RF. Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology. 2010;117(9):1792-9. doi: 10.1016/j.ophtha.2010.01.023. PubMed PMID: 20472289.
- Pryds A, Larsen M. Choroidal thickness following extrafoveal photodynamic treatment with verteporfin in patients with central serous chorioretinopathy. Acta Ophthalmol. 2012;90(8):738-43. doi: 10.1111/j.1755-3768.2011.02157.x. PubMed PMID: 21586096.
- Kim YT, Kang SW, Bai KH. Choroidal thickness in both eyes of patients with unilaterally active central serous chorioretinopathy. Eye. 2011;25(12):1635-40. doi: 10.1038/eye.2011.258. PubMed PMID: 22020172. PubMed PMCID: PMC3234484.
- Iida T, Kishi S, Hagimura N, Shimizu K. Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy. Retina. 1999;19(6):508-12. doi: 10.1097/00006982-199911000-00005. PubMed PMID: 10606450.
- Kim DY, Silverman RH, Chan RV, Khanifar AA, et al. Measurement of choroidal perfusion and thickness following systemic sildenafil (Viagra(®)). Acta Ophthalmol. 2013;91(2):183-8. doi: 10.1111/j.1755-3768.2011.02305.x. PubMed PMID: 22974308. PubMed PMCID: PMC3528845.
- Vance SK, Imamura Y, Freund KB. The effects of sildenafil citrate on choroidal thickness as determined by enhanced depth imaging optical coherence tomography. Retina. 2011;31(2):332-5. doi: 10.1097/IAE.0b013e3181eef0ae. PubMed PMID: 20975620.
- Eliwa TF, Hegazy OS, Mahmoud SS, Almaamon T. Choroidal Thickness Change in Patients With Diabetic Macular Edema. Ophthalmic Surg Lasers Imaging Retina. 2017;48(12):970-7. doi: 10.3928/23258160-20171130-03. PubMed PMID: 29253299.
- Esen E, Sizmaz S, Demir T, Demirkiran M, Unal I, Demircan N. Evaluation of Choroidal Vascular Changes in Patients with Multiple Sclerosis Using Enhanced Depth Imaging Optical Coherence Tomography. Ophthalmologica. 2016;235(2):65-71. doi: 10.1159/000441152. PubMed PMID: 26485541.
- Sim DA, Keane PA, Mehta H, Fung S, et al, Tufail A. Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography. Investigative Ophthalmology & Visual Science. 2013;54(4):2893-901. doi: 10.1167/iovs.12-11085.
- Chen Q, Fan W, Niu S, Shi J, Shen H, Yuan S. Automated choroid segmentation based on gradual intensity distance in HD-OCT images. Opt Express. 2015;23(7):8974-94. doi: 10.1364/OE.23.008974. PubMed PMID: 25968734.
- Dijkstra EW. A note on two problems in connexion with graphs. Numer Math. 1959;1(1):269-71. doi: 10.1007/BF01386390.
- Kajić V, Esmaeelpour M, Považay B, Marshall D, Rosin PL, Drexler W. Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model. Biomed Opt Express. 2012;3(1):86-103. doi: 10.1364/BOE.3.000086. PubMed PMID: 22254171. PubMed PMCID: PMC3255345.
- Torzicky T, Pircher M, Zotter S, Bonesi M, Götzinger E, Hitzenberger CK. Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography. Opt Express. 2012;20(7):7564-74. doi: 10.1364/OE.20.007564. PubMed PMID: 22453435. PubMed PMCID: PMC4392798.
- Tian J, Marziliano P, Baskaran M, Tun TA, Aung T. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images. Biomedical optics express. 2013;4(3):397-411. doi: 10.1364/BOE.4.000397. PubMed PMID: 23504041. PubMed PMCID: PMC3595084.
- Garvin MK, Abràmoff MD, Kardon R, Russell SR, Wu X, Sonka M. Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search. IEEE Trans Med Imag. 2008;27(10):1495-505. doi: 10.1109/TMI.2008.923966. PubMed PMID: 18815101. PubMed PMCID: PMC2614384.
- Zhang L, Lee K, Niemeijer M, Mullins RF, Sonka M, Abràmoff MD. Automated segmentation of the choroid from clinical SD-OCT. Invest Ophthalmol Vis Sci. 2012;53(12):7510-9. doi: 10.1167/iovs.12-10311. PubMed PMID: 23060139. PubMed PMCID: PMC3490539.
- Hu Z, Wu X, Ouyang Y, Ouyang Y, Sadda SR. Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans. Invest Ophthalmol Vis Sci. 2013;54(3):1722-9. doi: 10.1167/iovs.12-10578. PubMed PMID: 23349432.
- Lee S, Fallah N, Forooghian F, Ko A, Pakzad-Vaezi K, et al. Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013;54(4):2864-71. doi: 10.1167/iovs.12-11521. PubaMed PMID: 23538060.
- Gerendas BS, Waldstein SM, Simader C, et al. Three-dimensional automated choroidal volume assessment on standard spectral-domain optical coherence tomography and correlation with the level of diabetic macular edema. Am J Ophthalmol. 2014;158(5):1039-48. doi: 10.1016/j.ajo.2014.08.001. PubMed PMID: 25127697. PubMed PMCID: PMC5750044.
- Srinath N, Patil A, Kumar VK, Jana S, Chhablani J, Richhariya A. Automated detection of choroid boundary and vessels in optical coherence tomography images. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago, USA: IEEE; 2014. p. 166-9. doi: 10.1109/embc.2014.6943555.
- Vupparaboina KK, Nizampatnam S, Chhablani J, Richhariya A, Jana S. Automated estimation of choroidal thickness distribution and volume based on OCT images of posterior visual section. Comput Med Imag Graph. 2015;46:315-27. doi: 10.1016/j.compmedimag.2015.09.008. PubMed PMID: 26526231
- Shi F, Tian B, Zhu W, Xiang D, Zhou L, Xu H, Chen X. Automated choroid segmentation in three-dimensional 1-μm wide-view OCT images with gradient and regional costs. J Biomed Opt. 2016;21(12):126017. doi: 10.1117/1.JBO.21.12.126017. PubMed PMID: 28006046.
- Twa MD, Schulle KL, Chiu SJ, Farsiu S, Berntsen DA. Validation of Macular Choroidal Thickness Measurements from Automated SD-OCT Image Segmentation. Optom Vis Sci. 2016;93(11):1387-98. doi: 10.1097/OPX.0000000000000985. PubMed PMID: 27668634. PubMed PMCID: PMC5108587.
- Chen Q, Niu S, Fang W, Shuai Y, Fan W, Yuan S, Liu Q. Automated choroid segmentation of three-dimensional SD-OCT images by incorporating EDI-OCT images. Comput Methods Programs Biomed. 2018;158:161-71. doi: 10.1016/j.cmpb.2017.11.002. PubMed PMID: 29544782.
- Mazzaferri J, Beaton L, Hounye G, Sayah DN, Costantino S. Open-source algorithm for automatic choroid segmentation of OCT volume reconstructions. Sci Rep. 2017;7:42112. doi: 10.1038/srep42112. PubMed PMID: 28181546. PubMed PMCID: PMC5299605.
- Al-Bander B, Williams BM, Al-Taee MA, Al-Nuaimy W, Zheng Y. A novel choroid segmentation method for retinal diagnosis using deep learning. 10th International Conference on Developments in eSystems Engineering (DeSE); Paris, France: IEEE; 2017. p. 182-7. doi: 10.1109/DeSE.2017.37.
- Chen M, Wang J, Oguz I, VanderBeek BL, Gee JC. Automated segmentation of the choroid in edi-oct images with retinal pathology using convolution neural networks. Fetal, Infant and Ophthalmic Medical Image Analysis. 2017:177-84. doi: 10.1007/978-3-319-67561-9_20. PMID: 29757338. PMCID: PMC5947958.
- Wang C, Wang YX, Li Y. Automatic choroidal layer segmentation using markov random field and level set method. IEEE J Biomed Health Inform. 2017;21(6):1694-702. doi: 10.1109/JBHI.2017.2675382.
- Salafian B, Kafieh R, Rashno A, Pourazizi M, Sadri S. Automatic segmentation of choroid layer in edi oct images using graph theory in neutrosophic space. ArXiv. 2018.
- Masood S, Fang R, Li P, Li H, Sheng B, Mathavan A et al. Automatic Choroid Layer Segmentation from Optical Coherence Tomography Images Using Deep Learning. Sci Rep. 2019;9(1):3058. doi: 10.1038/s41598-019-39795-x. PubMed PMID: 30816296. PubMed PMCID: PMC6395677.
- George N, Jiji CV. Two stage contour evolution for automatic segmentation of choroid and cornea in OCT images. Biocybern Biomed Eng. 2019;39(3):686-96. doi: 10.1016/j.bbe.2019.05.012.
- Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297-302. doi: 10.2307/1932409.
- Boddy R, Smith GL. Statistical methods in practice: for scientists and technologists. Chichester, UK: John Wiley & Sons; 2009.
- Lehmann EL, Casella G. Theory of point estimation. Springer Science & Business Media; 2006.
- Willmott CJ, Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res. 2005;30(1):79-82. doi: 10.3354/cr030079.
|