- Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67:7-30. doi: 10.3322/caac.21387. PubMed PMID: 28055103.
- Hehr T, Wust P, Bamberg M, Budach W. Current and potential role of thermoradiotherapy for solid tumours. Onkologie. 2003;26:295-302. doi: 10.1159/000071628. PubMed PMID: 12845217.
- Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, et al. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J Control Release. 2016;235:205-21. doi: 10.1016/j.jconrel.2016.05.062. PubMed PMID: 27264551.
- Banobre-Lopez M, Teijeiro A, Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother. 2013;18:397-400. doi: 10.1016/j.rpor.2013.09.011. PubMed PMID: 24416585. PubMed PMCID: PMC3863197.
- Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C. 2016;120:4691-716. doi: 10.1021/acs.jpcc.5b11232.
- Jaque D, Martinez Maestro L, Del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014;6:9494-530. doi: 10.1039/c4nr00708e. PubMed PMID: 25030381.
- Chatterjee DK, Diagaradjane P, Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv. 2011;2:1001-14. PubMed PMID: 22506095. PubMed PMCID: PMC3323111.
- Raoof M, Cisneros BT, Corr SJ, Palalon F, Curley SA, Koshkina NV. Tumor selective hyperthermia induced by short-wave capacitively-coupled RF electric-fields. PLoS One. 2013;8:e68506. doi: 10.1371/journal.pone.0068506. PubMed PMID: 23861912. PubMed PMCID: PMC3701653.
- Glazer ES, Massey KL, Zhu C, Curley SA. Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery. 2010;148:319-24. doi: 10.1016/j.surg.2010.04.025. PubMed PMID: 20541785. PubMed PMCID: PMC2904623.
- Hosseini V, Mirrahimi M, Shakeri-Zadeh A, Koosha F, Ghalandari B, Maleki S, et al. Multimodal cancer cell therapy using Au@ Fe2O3 core–shell nanoparticles in combination with photo-thermo-radiotherapy. Photodiagnosis Photodyn Ther. 2018;24:129-35. doi: 10.1016/j.pdpdt.2018.08.003.
- Li X, Wei J, Aifantis KE, Fan Y, Feng Q, Cui FZ, et al. Current investigations into magnetic nanoparticles for biomedical applications. J Biomed Mater Res A. 2016;104:1285-96. doi: 10.1002/jbm.a.35654. PubMed PMID: 26779606.
- Elsherbini AA, Saber M, Aggag M, El-Shahawy A, Shokier HA. Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging. Magn Reson Imaging. 2011;29:272-80. doi: 10.1016/j.mri.2010.08.010. PubMed PMID: 21145190.
- Schwartz JA, Price RE, Gill-Sharp KL, Sang KL, Khorchani J, Goodwin BS, et al. Selective nanoparticle-directed ablation of the canine prostate. Lasers Surg Med. 2011;43:213-20. doi: 10.1002/lsm.21039. PubMed PMID: 21412805.
- Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2:330-42.
- Müller GJ, Roggan A. Laser-induced interstitial thermotherapy. Bellingham, Wash: SPIE Optical Engineering Press; 1995.
- Kang YS, Risbud S, Rabolt JF, Stroeve P. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater. 1996;8:2209-11.
- Mirrahimi M, Hosseini V, Kamrava SK, Attaran N, Beik J, Kooranifar S, et al. Selective heat generation in cancer cells using a combination of 808 nm laser irradiation and the folate-conjugated Fe2O3@ Au nanocomplex. Artif Cells Nanomed Biotechnol. 2018;46:241-53.
- Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Letters. 2004;4:719-23. doi: 10.1021/nl035253f.
- Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1-16. doi: 10.1146/annurev-bioeng-071811-150124. PubMed PMID: 22524388.
- Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-Dependent Endocytosis of Nanoparticles. Adv Mater. 2009;21:419-24. doi: 10.1002/adma.200801393. PubMed PMID: 19606281. PubMed PMCID: PMC2709876.
- Huang X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1:13-28.
- Green HN, Crockett SD, Martyshkin DV, Singh KP, Grizzle WE, Rosenthal EL, et al. A histological evaluation and in vivo assessment of intratumoral near infrared photothermal nanotherapy-induced tumor regression. Int J Nanomedicine. 2014;9:5093-102. doi: 10.2147/IJN.S60648. PubMed PMID: 25395847. PubMed PMCID: PMC4227627.
- Chen M, Fang X, Tang S, Zheng N. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chem Commun (Camb). 2012;48:8934-6. doi: 10.1039/c2cc34463g. PubMed PMID: 22847451.
- Liu Q, Sun C, He Q, Liu D, Khalil A, Xiang T, et al. Ultrathin carbon layer coated MoO 2 nanoparticles for high-performance near-infrared photothermal cancer therapy. Chemical Communications. 2015;51:10054-7. doi: 10.1039/c5cc02016f.
|