- Cucinotta FA. Review of NASA approach to space radiation risk assessments for Mars exploration. Health Phys. 2015;108:131-42. doi: 10.1097/HP.0000000000000255. PubMed PMID: 25551493.
- Hoffman SJ, Kaplan DI. Human exploration of Mars: the reference mission of the NASA Mars exploration study team. Linthicum Heights; National Aeronautics and Space Administration; 1997.
- Fry R, Ainsworth E, Blakely E, Boice Jr J, Curtis S, Land C. Radiation protection guidance for activities in low-earth orbit. Report 132; NCRP; 2000. p. 17-151.
- Zeitlin C, Hassler D, Cucinotta F, Ehresmann, Wimmer-Schweingruber R, Brinza D, Kang S, Weigle G, Böttcher S, Böhm E. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science. 2013;340:1080-4. doi: 10.1126/science.1235989. PubMed PMID: 23723233.
- Durante M. Space radiation protection: destination Mars. Life Sci Space Res. 2014;1:2-9. doi: 10.1016/j.lssr.2014.01.002. PubMed PMID: 26432587.
- Sihver L. Transport calculations and accelerator experiments needed for radiation risk assessment in space. Z Med Phys. 2018;18:253-64. doi: 10.1016/j.zemedi.2008.06.013. PubMed PMID: 19205295.
- Sihver L, Mortazavi SMJ. Radiation Risks and Countermeasures for Humans on Deep Space Missions. IEEE Aerospace Conference; USA: IEEE; 2019. p. 1-10. doi: 10.1109/AERO.2019.8742175.
- Youngblom JH, Wiencke JK, Wolff S. Inhibition of the adaptive response of human lymphocytes to very low doses of ionizing radiation by the protein synthesis inhibitor cycloheximide. Mutat Res. 1989;227:257-61. doi: 10.1016/0165-7992(89)90107-3.
- Wolff S, Afzal V, Wiencke JK, Olivieri G, Michaeli A. Human lymphocytes exposed to low doses of ionizing radiations become refractory to high doses of radiation as well as to chemical mutagens that induce double-strand breaks in DNA. Int J Radiat Biol Relat Stud Phys Chem Med. 1988;53:39-47. doi: 10.1080/09553008814550401. PubMed PMID: 3257477.
- Shadley JD, Afzal V, Wolff S. Characterization of the adaptive response to ionizing radiation induced by low doses of X rays to human lymphocytes. Radiat Res. 1987;111:511-7. doi: 10.2307/3576936. PubMed PMID: 3659285.
- Wiencke JK, Afzal V, Olivieri G, Wolff S. Evidence that the [3H]thymidine-induced adaptive response of human lymphocytes to subsequent doses of X-rays involves the induction of a chromosomal repair mechanism. Mutagenesis. 1986;1:375-80. doi: 10.1093/mutage/1.5.375. PubMed PMID: 3137415.
- Olivieri G, Bodycote J, Wolff S. Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science. 1984;223:594-7. doi: 10.1126/science.6695170. PubMed PMID: 6695170.
- Feinendegen LE, Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol. 2005;78:3-7. doi: 10.1259/bjr/63353075. PubMed PMID: 15673519.
- Feinendegen LE, Pollycove M, Sondhaus CA. Responses to low doses of ionizing radiation in biological systems. Nonlinearity Biol Toxicol Med. 2004;2;143-71. doi: 10.1259/bjr/63353075. PubMed PMID: 15673519.
- Mortazavi SMJ, Cameron J, Niroomand-Rad A. Adaptive response studies may help choose astronauts for long-term space travel. Adv Space Res. 2003;31:1543-51. doi: 10.1016/s0273-1177(03)00089-9. PubMed PMID: 12971409.
- Mortazavi SMJ, Cameron J, Niroomand-Rad A. The life saving role of radioadaptive responses in long-term interplanetary space journeys. Int Cong. 2005;1276:266-7. doi: 0.1016/j.ics.2004.12.019.
- Takahashi A, Ikeda H, Yoshida Y. Role of High-Linear Energy Transfer Radiobiology in Space Radiation Exposure Risks. International Journal of Particle Therapy. 2018;5(1):151-9. doi: 10.14338/ijpt-18-00013.1.
- Elmore E, Lao XY, Kapadia R, Swete M, Redpath JL. Neoplastic transformation in vitro by mixed beams of high-energy iron ions and protons. Rad Res. 2011;176:291-302. doi: 10.1667/rr2646.1. PubMed PMID: 21732791.
- Chancellor JC, Scott GB, Sutton JP. Space radiation: the number one risk to astronaut health beyond low earth orbit. Life. 2014;4:491-510. doi: 10.3390/life4030491. PubMed PMID: 25370382. PubMed PMCID: PMC4206856.
- Cortese F, Klokov D, Osipov A, Stefaniak J, Moskalev A, Schastnaya J, Cantor C, Aliper A, Mamoshina P, Ushakov I, Sapetsky A. Vive la radioresistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget. 2018;9:14692-722. doi: 10.18632/oncotarget.24461. PubMed PMID: 29581875. PubMed PMCID: PMC5865701.
- Bevelacqua JJ, Welsh J, Mortazavi SMJ. Comments on ‘An overview of space medicine. Br J Anaesth. 2018;120(4):874-6. doi: 10.1016/j.bja.2017.12.015. PubMed PMID: 29576129.
- Welsh J, Bevelacqua JJ, Keshavarz M, Mortazavi SMJ. Is Telomere Length a Biomarker of Adaptive Re-sponse in Space?. Curious Findings from NASA and Residents of High Background Radiation Areas. J Biomed Phys Eng. 2019;9(3):381-8. doi: 10.31661/jbpe.v9i3Jun.1151. PubMed PMID: 31341884. PubMed PMCID: PMC6613149.
- Mortazavi SMJ, Bevelacqua JJ, Fornalski KW, Welsh J, Doss M. Comments on “Space: The Final Frontier-Research Relevant to Mars”. Health Phys. 2018;114:344-5. doi: 10.1097/HP.0000000000000823. PubMed PMID: 29360711. PubMed PMCID: PMC5784783.
- Mortazavi SMJ, Cameron JR, Niroomand-Rad A. Is the adaptive response an efficient protection against the detrimental effects of space radiation. International Cosmic Ray Conference. 2003;7:4299-302.
- Mortazavi SMJ. How Does Biological Protection Help Astronauts Tolerate High Levels of Radiation During Deep Space Manned Missions? Mechanical Engineering Conference Room; Grove School of Engineering; 2017.
- Shtemberg AS, Lebedeva-Georgievskaya KB, Matveeva MI, Kudrin VS, Narkevich VB, Klodt PM, Bazyan AS. Effect of space flight factors simulated in ground-based experiments on the behavior, discriminant learning, and exchange of monoamines in different brain structures of rats. Biol Bull. 2014;41:161-7. doi: 10.1134/S1062359014020095.
- Shtemberg AS. The problem of organism individual resistance and radioresitance to prolonged space flights factors influence. 35th COSPAR Scientific Assembly; Paris, France: COSPAR; 2004. p. 4216.
- Bevelacqua JJ, Mortazavi SMJ. Commentary: Human Pathophysiological Adaptations to the Space Environmen. Front Physiol. 2017;8:1116. doi: 10.3389/fphys.2017.01116. PubMed PMID: 29358922. PubMed PMCID: PMC5766677.
- Bevelacqua, JJ, Welsh J, Mortazavi SMJ. Comments on ‘An overview of space medicine. Br J Anaesth. 2018;120:874-6. doi: 10.1016/j.bja.2017.12.015. PubMed PMID: 29576129.
- Wheeler KT, Payne V, D’Agostino RB, Walb MC, Munley MT, Metheny-Barlow LJ, Robbins ME. Impact of Breathing 100% Oxygen on Radiation-Induced Cognitive Impairment. Radiat Res. 2014:182:580-5. doi: 10.1667/RR13643.1. PubMed PMID: 25338095. PubMed PMCID: PMC4321947.
- Cucinotta FA, Chappell LJ. Non-targeted effects and the dose response for heavy ion tumor induction. Mutat Res. 2010;687:49-53. doi: 10.1016/j.mrfmmm.2010.01.012. PubMed PMID: 20085778.
- Turker MS, Connolly L, Dan C, Lasarev M, Gauny S, Kwoh E, Kronenberg A Comparison of autosomal mutations in mouse kidney epithelial cells exposed to iron ions in situ or in culture. Radiat Res. 2009;172:558-66. doi: 10.1667/RR1805.1. PubMed PMID: 19883223.
- Jain MR, Li M, Chen W, Liu T, de Toledo SM, Pandey BN, Li H, Rabin BM, Azzam EI, In vivo space radiation-induced non-targeted responses: late effects on molecular signaling in mitochondria. Curr Mol Pharmacol. 2011;4:106-14. doi: 10.2174/1874467211104020106. PubMed PMID: 21166651. PubMed PMCID: PMC3330755.
- Huff J, Carnell L, Blattnig S, Chappell L, Kerry G, Lumpkins S, Simonsen L, Slaba T, Werneth C. Evidence report: risk of radiation carcinogenesis. Report Number JSC-CN-35748; United States: NTRS; 2016.
- Ramadan SS, Sridharan V, Koturbash I, Miousse IR, Hauer-Jensen M, Nelson GA, Boerma M. A priming dose of protons alters the early cardiac cellular and molecular response to (56)Fe irradiation. Life Sci Space Res. 2016;8:8-13. doi: 10.1016/j.lssr.2015.12.001. PubMed PMID: 26948008. PubMed PMCID: PMC4782196.
- Buonanno M, De Toledo SM, Howell RW, Azzam EI. Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions. J Radiat Res. 2015;56:502-8. doi: 10.1093/jrr/rrv005. PubMed PMID: 25805407. PubMed PMCID: PMC4426929.
- Zhou G, Bennett PV, Cutter NC, Sutherland BM. Proton-HZE-particle sequential dual-beam exposures increase anchorage-independent growth frequencies in primary human fibroblasts. Radiat Res. 2006;166:488-94. doi: 10.1667/RR0596.1. PubMed PMID: 16953667.
- Curtis SB, Letaw JR. Galactic cosmic rays and cell-hit frequencies outside the magnetosphere. Adv Space Res. 1989;9:293-8. doi: 10.1016/0273-1177(89)90452-3. PubMed PMID: 11537306.
- Bissell M, Warner H, Berger S, Fry R, Hanawalt P, Kastan M. Modeling human risk: Cell & molecular biology in context. Report Number: LBNL-40278; US: NASA; 1977.
- Aunins TR, Erickson KE, Prasad N, Levy SE, Jones A, Shrestha S, Mastracchio R, Stodieck L, Klaus D, Zea L, Chatterjee A. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response. Front Microbiol. 2018;9:310. doi: 10.3389/fmicb.2018.00310. PubMed PMID: 29615983. PubMed PMCID: PMC5865062.
- Mortazavi SMJ, Zarei S, Taheri M, Tajbakhsh S, Mortazavi SA, Ranjbar S, Momeni F, Masoomi S, Ansari L, Movahedi MM, Taeb S, Haghani M. Sensitivity to Antibiotics of Bacteria Exposed to Gamma Radiation Emitted from Hot Soils of the High Background Radiation Areas of Ramsar, Northern Iran. Int J Occup Environ Med. 2017;8:80-4. doi: 10.15171/ijoem.2017.958. PubMed PMID: 28432369. PubMed PMCID: PMC6679611.
- Taheri M, Mortazavi SMJ, Moradi M, Mansouri S, Hatam GR, Nouri F. Evaluation of the Effect of Radiofrequency Radiation Emitted From Wi-Fi Router and Mobile Phone Simulator on the Antibacterial Susceptibility of Pathogenic Bacteria Listeria monocytogenes and Escherichia coli. Dose Resp. 2017;15.1-8. doi: 10.1177/1559325816688527. PubMed PMID: 28203122. PubMed PMCID: PMC5298474.
- Mermel LA. Infection prevention and control during prolonged human space travel. Clin Infect Dis. 2013;56:123-30. doi: 10.1093/cid/cis861. PubMed PMID: 23051761.
- Wilson JW, Ott CM, Zu Bentrup KH, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA. 2007;104:16299-304. doi: 10.1073/pnas.0707155104. PubMed PMID: 17901201. PubMed PMCID: PMC2042201.
- Crucian B, Stowe R, Mehta S, Uchakin P, Quiriarte H, Pierson D, Sams C, Immune System Dysregulation Occurs During Short Duration Spaceflight On Board the Space Shuttle. J Clin Immun. 2013;33:456-65. doi: 10.1007/s10875-012-9824-7.
- Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J Nutr. 2005;135:437-43. doi: 10.1093/jn/135.3.437. PubMed PMID: 15735075.
- Giardi MT, Touloupakis E, Bertolotto E, Mascetti G. Preventive or Potential Therapeutic Value of Nutraceuticals against Ionizing Radiation-Induced Oxidative Stress in Exposed Subjects and Frequent Fliers. Int J Mol Sci. 2013;14:17168-92. doi: 10.3390/ijms140817168. PubMed PMID: 23965979. PubMed PMCID: PMC3759958.
- Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB. Radioprotectors and Mitigators of Radiation-Induced Normal Tissue Injury. The Oncologist. 2010;15:360-71. doi: 10.1634/theoncologist.2009-S104. PubMed PMID: 20413641. PubMed PMCID: PMC3076305.
- Weiss JF, Landauer MR. History and development of radiation-protective agents. Int J Radiat Biol. 2009;85:539-73. doi: 10.1080/09553000902985144. PubMed PMID: 19557599.
- Kennedy AR, Davis JG, Carlton W, Ware JH. Effects of dietary antioxidant supplementation on the development of malignant lymphoma and other neoplastic lesions in mice exposed to proton or iron-ion radiation. Radiat Res. 2008;169:615-25. doi: 10.1667/RR1296.1. PubMed PMID: 18494549. PubMed PMCID: PMC3589916.
- Cucinotta FA, Manuel FK, Jones J, Iszard G, Murrey J, Djojonegro B, Wear M. Space radiation and cataracts in astronauts. Radiat Res. 2001;156:460-6. doi: 10.1667/0033-7587(2001)156[0460:sracia]2.0.co;2. PubMed PMID: 11604058.
- Cucinotta FA, Schimmerling W, Wilson JW, Peterson LE, Badhwar GD, Saganti PB, Dicello JF. Space radiation cancer risks and uncertainties for Mars missions. Radiat Res. 2001;156:682-8. doi: 10.1667/0033-7587(2001)156[0682:srcrau]2.0.co;2. PubMed PMID: 11604093.
- Boerma M, Nelson GA, Sridharan V, Mao XW, Koturbash I, Hauer-Jensen M. Space radiation and cardiovascular disease risk. World J Cardiol. 2015;7:882-8. doi: 10.4330/wjc.v7.i12.882. PubMed PMID: 26730293. PubMed PMCID: PMC4691814.
- Asselin-Labat ML, Rampersad R, Xu X, Ritchie ME, Michalski J, Huang L, Onaitis MW. High-LET Radiation Increases Tumor Progression in a K-Ras-Driven Model of Lung Adenocarcinoma. Radiat Res. 2017;188:562-70. doi: 10.1667/RR14794.1. PubMed PMID: 28952911.
- Sylvester CB, Abe JI, Patel ZS, Grande-Allen KJ. Radiation-Induced Cardiovascular Disease: Mechanisms and Importance of Linear Energy Transfer. Front Cardiovasc Med. 2018;5:5. doi: 10.3389/fcvm.2018.00005. PubMed PMID: 29445728. PubMed PMCID: PMC5797745.
- Nukala U, Thakkar S, Krager KJ, Breen PJ, Compadre CM, Aykin-Burns N. Antioxidant Tocols as Radiation Countermeasures (Challenges to be Addressed to Use Tocols as Radiation Countermeasures in Humans). Antioxidants (Basel). 2018;7:2-15. doi: 10.3390/antiox7020033. PubMed PMID: 29473853. PubMed PMCID: PMC5836023.
- Schreurs AS, Shirazi-Fard Y, Shahnazari M, Alwood JS, Truong TA, Tahimic CG, Limoli CL, Turner ND, Halloran B, Globus RK. Dried plum diet protects from bone loss caused by ionizing radiation. Sci Rep. 2016;6:21343. doi: 10.1038/srep21343. PubMed PMID: 26867002. PubMed PMCID: PMC4750446.
- Kennedy AR, Zhou Z, Donahue JJ, Ware JH. Protection against adverse biological effects induced by space radiation by the Bowman-Birk inhibitor and antioxidants. Radiat Res. 2006;166:327-32. doi: 10.1667/RR3599.1. PubMed PMID: 16881733.
- Kennedy AR, Ware JH, Guan J, Donahue JJ, Biaglow JE, Zhou Z, Stewart J, Vazquez M, Wan XS. Selenomethionine protects against adverse biological effects induced by space radiation. Free Radic Biol Med. 2004;36:259-66. doi: 10.1016/j.freeradbiomed.2003.10.010. PubMed PMID: 14744637.
- Cordero RJ. Melanin for space travel radioprotection. Env Microbial. 2017;19:2529-32. doi: 10.1111/1462-2920.13753. PubMed PMID: 28419675.
- Hu S. Solar Particle Events and Radiation Exposure in Space. 2017. Available from: https://three.jsc.nasa.gov/articles/Hu-SPEs.pdf.
- Sanzari JK, Cengel KA, Wan XS, Rusek A, Kennedy AR. Acute hematological effects in mice exposed to the expected doses, dose-rates, and energies of solar particle event-like proton radiation. Life Sciences in Space Research. 2014;2:86-91. doi: 10.1016/j.lssr.2014.01.003. PubMed PMID: 25202654. PubMed PMCID: PMC4155507.
- McPhee JC, Charles JB. Human health and performance risks of space exploration missions: evidence reviewed by the NASA human research program. NASA; 2009. p. 3405.
- Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. Lippincott, Williams & Wilkins; 2012.
- Kleiman NJ, Stewart FA, Hall EJ. Modifiers of radiation effects in the eye. Life Sci Space Res. 2017;15:43-54. doi: 10.1016/j.lssr.2017.07.005. PubMed PMID: 29198313.
- Rodman C, Almeida-Porada G, George SK, Moon J, Soker S, et al. In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells. Leukemia. 2017;31(6):1398-407. doi: 10.1038/leu.2016.344. PubMed PMID: 27881872. PubMed PMCID: PMC5870806.
- Rapp D. MARS Mars Life Support Systems. Mars. 2006;2:72-82. doi: 10.1555/mars.2006.0004.
- Rapp D. Human Missions to Mars. Springer; 2008.
- Kennedy AR. Biological Effects of Space Radiation and Development of Effective Countermeasures. Life Sci Space Res (Amst). 2014;1:10-43. doi: 10.1016/j.lssr.2014.02.004. PubMed PMID: 25258703. PubMed PMCID: PMC4170231.
- Rajan Radha R, Chandrasekharan G. Pulmonary injury associated with radiation therapy - Assessment, complications and therapeutic targets. Biomed Pharmacother. 2017;89:1092-104. doi: 10.3390/ijms20163876. PubMed PMID: 31398940. PubMed PMCID: PMC6719901.
- Bourgier C, Levy A, Vozenin MC, Deutsch E. Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics? Cancer Metastasis Rev. 2012;31:699-712. doi: 10.1007/s10555-012-9381-9. PubMed PMID: 22706781.
- Kuntic VS, Stankovic MB, Vujic ZB, Brboric JS, Uskokovic-Markovic SM. Radioprotectors - the evergreen topic. Chem Biodivers. 2013;10:1791-803. doi: 10.1002/cbdv.201300054. PubMed PMID: 24130023.
- Szejk M, Kołodziejczyk-Czepas J, Żbikowska HM. Radioprotectors in radiotherapy-advances in the potential application of phytochemicals. Postepy Hig Med Dosw (Online). 2016;70:722-34. doi: 10.5604/17322693.1208039. PubMed PMID: 27356603.
- Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist. 2007;12:738-47. doi: 10.1634/theoncologist.12-6-738. PubMed PMID: 17602063.
- Ueno M, Matsumoto S, Matsumoto A, Manda S, Nakanishi I, Matsumoto KI, Mitchell JB, Krishna MC, Anzai K. Effect of amifostine, a radiation-protecting drug, on oxygen concentration in tissue measured by EPR oximetry and imaging. J Clin Biochem Nutr. 2017;60:151-5. doi: 10.3164/jcbn.15-130. PubMed PMID: 28584395. PubMed PMCID: PMC5453015.
- Langell J, Jennings R, Clark J, Ward JB. Pharmacological agents for the prevention and treatment of toxic radiation exposure in spaceflight. Aviat Space Environ Med. 2008;79:651-60. doi: 10.3357/asem.2113.2008. PubMed PMID: 18619123.
- Narra VR, Howell RW, Sastry KS, Rao DV. Vitamin C as a radioprotector against iodine-131 in vivo. J Nucl Med. 1993;34:637-40. PubMed PMID: 8455081.
- Mortazavi SMJ, Foadi M, Mozdarani H, Haghani M, Mosleh MA, et al. Future role of vitamin C in radiation mitigation and its possible applications in manned deep space missions: Survival study and the measurement of cell viability. Int J Radiat Res (IJRR). 2015;13(1):55-60.
- Mettler Jr FA, Brenner D, Coleman CN, Kaminski JM, Kennedy AR, Wagner LK. Can radiation risks to patients be reduced without reducing radiation exposure? The status of chemical radioprotectants. AJR AM. 2011;196:616-8. doi: 10.2214/AJR.10.4959. PubMed PMID: 21343505.
- Mortazavi SMJ, Sharif-Zadeh S, Mozdarani H, Foadi M, Haghani M, Sabet E. Future role of vitamin C in radiation mitigation and its possible applications in manned deep space missions: Survival study and the measurement of cell viability. Physica Medica: European Journal of Medical Physics. 2014;3:e97. doi: 10.1016/j.ejmp.2014.07.278.
- Sato T, Kinoshita M, Yamamoto T, Ito M, Nishida T, Takeuchi M, Saitoh D, Seki S, Mukai Y. Treatment of irradiated mice with high-dose ascorbic acid reduced lethality. PLoS One. 2015;10:e0117020. doi: 10.1371/journal.pone.0117020. PubMed PMID: 25651298. PubMed PMCID: PMC4317183.
- Mao XW, Pecaut MJ, Stodieck LS, Ferguson VL, Bateman TA, Bouxsein M, Jones TA, Moldovan M, Cunningham CE, Chieu J, Gridley DS. Spaceflight environment induces mitochondrial oxidative damage in ocular tissue. Radiat Res. 2013;180:340-50. doi: 10.1667/RR3309.1. PubMed PMID: 24033191.
- Wei L, Liang G, Cai C, Lv J. Association of vitamin C with the risk of age-related cataract: a meta-analysis. Acta Ophthalmol. 2016;94:e170-6. doi: 10.1111/aos.12688. PubMed PMID: 25735187.
- Crucian BE, Stowe RP, Pierson DL, Sams CF. Immune system dysregulation following short-vs long-duration spaceflight. Aviat Space Environ Med. 2008;79:835-43. doi: 10.3357/asem.2276.2008. PubMed PMID: 18785351.
- Crucian B, Simpson RJ, Mehta S, Stowe R, Chouker A, Hwang SA, Actor JK, Salam AP, Pierson D, Sams C. Terrestrial stress analogs for spaceflight associated immune system dysregulation. Brain Behav Immun. 2014;39:23-32. doi: 10.1016/j.bbi.2014.01.011. PubMed PMID: 24462949.
|