تعداد نشریات | 20 |
تعداد شمارهها | 1,149 |
تعداد مقالات | 10,518 |
تعداد مشاهده مقاله | 45,415,514 |
تعداد دریافت فایل اصل مقاله | 11,291,308 |
Computational and Experimental Tools of miRNAs in Cancer | ||
Middle East Journal of Cancer | ||
مقاله 1، دوره 11، شماره 4 - شماره پیاپی 44، دی 2020، صفحه 381-389 اصل مقاله (201.75 K) | ||
نوع مقاله: Review Article(s) | ||
شناسه دیجیتال (DOI): 10.30476/mejc.2020.82239.1069 | ||
نویسنده | ||
Esen Çakmak* | ||
Kirşehir Ahi Evran University, Mucur Health Services Vocational School, Department of Medical Services and Techniques, Medical Laboratory Techniques Program, Mucur Campus, Kirşehir, Turkey | ||
چکیده | ||
MicroRNAs (miRNAs) are short non-protein coding and single-stranded small RNA molecules with a critical role in the regulation of gene expression. These molecules are crucial regulatory elements in diverse biological processes such as apoptosis, development, and progression. miRNA genes have been associated with various human diseases, particularly cancer, and considered as a new biomarker. After the discovery of miRNAs, many researches have focused on identifying and characterizing miRNA genes in cancer. The various expression levels of miRNAs between cancer cells and normal cells are very crucial to diagnosis, prognosis, and treatment of many cancers. Many computational and experimental tools have been employed to characterize miRNAs. However, there exist some challenges in identifying miRNA using both computational and experimental tools due to miRNA features. The present review briefly introduced miRNA biology and certain computational and experimental tools for identifying and profiling miRNAs in cancer. Furthermore, we presented the advantages and challenges of these tools. | ||
کلیدواژهها | ||
miRNAs؛ Cancer؛ Computational tools؛ Experimental tools | ||
اصل مقاله | ||
How to cite this article: Çakmak E. Computational and experimental tools of miRNAs in cancer. Middle East J Cancer. 2020;11(4): 381-9. doi:10.30476/mejc.2020.82239.1069 | ||
مراجع | ||
1. Lee RC, Feinbaum RL, Ambros V. The C . elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to & II-14. Cell. 1993;75:843-54.
2. Farazi TA, Hoell JI, Morozov P, Tuschl T. microRNAs in Human Cancer. Adv Exp Med Biol. 2013;774:1-20. doi:10.1007/978-94-007-5590-1
3. Tan W, Liu B, Qu S, Liang G, Luo WEI, Gong C. MicroRNAs and cancer : Key paradigms in molecular therapy ( Review ). Oncol Lett. 2018;15:2735-2742. doi:10.3892/ol.2017.7638
4. Ding H, Lv Z, Yuan Y, Xu Q. MiRNA Polymorphisms and Cancer Prognosis : A Systematic Review and. Front Oncol. 2018;8:1-14. doi:10.3389/fonc.2018.00596
5. Iorio M V, Ferracin M, Liu C, et al. MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Res. 2005;65(16):7065-7071. doi:10.1158/0008-5472.CAN-05-1783
6. Sassen S, Miska EA, Caldas C. MicroRNA — implications for cancer. Virchows Arch. 2008;452:1-10. doi:10.1007/s00428-007-0532-2
7. Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer : pathways and clinical implications. Dis Model Mech. 2017;10:197-214. doi:10.1242/dmm.027441
8. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol 2009. 2009;4:199-227. doi:10.1146/annurev.pathol.4.110807.092222.MicroRNAs
9. Connelly CM, Deiters A. Small-Molecule Regulation of MicroRNA Function. In: Alahari S, ed. MicroRNA in Cancer. 1st ed. Netherlands: Springer Netherlands; 2013:119-145. doi:10.1007/978-94-007-4655-8
10. Rachagani S, Kumar S, Batra SK. MicroRNA in Pancreatic Cancer: Pathological, Diagnostic and Therapeutic implications. Cancer Lett. 2011;292(1):8-16. doi:10.1016/j.canlet.2009.11.010.MicroRNA
11. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. PNAS. 2004;101(9):2999-3004.
12. Wiemer EAC. The role of microRNAs in cancer : No small matter. Eur J Cancer. 2007;43(2007):1529-1544. doi:10.1016/j.ejca.2007.04.002
13. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci. 2002;99(24):13-18.
14. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. PNAS. 2005;102(39):13944-13949.
15. Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. PNAS. 2005;102(10):3627-3632.
16. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189-198. doi:10.1016/j.ccr.2006.01.025
17. Skrzypski M, Dziadziuszko R, Jassem J. MicroRNA in lung cancer diagnostics and treatment. Mutat Res / Fundam Mol Mech Mutagen. 2011;717(2011):25-31. doi:10.1016/j.mrfmmm.2011.04.002
18. Corney DC, Nikitin AY. MicroRNA and ovarian cancer David. Histol Histopathol. 2009;23(9):1161-1169.
19. Catto JWF, Alcaraz A, Bjartell AS, et al. MicroRNA in Prostate , Bladder , and Kidney Cancer : A Systematic Review. Eur Urol. 2011;59(5):671-681. doi:10.1016/j.eururo.2011.01.044
20. Dong Y, Wu WKK, Wu CW, Sung JJY, Yu J, Ng SSM. MicroRNA dysregulation in colorectal cancer : a clinical perspective. Br J Cancer. 2011;104:893-898. doi:10.1038/bjc.2011.57
21. Pan H, Li S, Tsai K. MicroRNA Dysregulation in Gastric Cancer. Curr Pharm Des. 2013;19:1273-1284.
22. Planell-Saguer M De, Rodicio MC. Analytica Chimica Acta Analytical aspects of microRNA in diagnostics : A review. Anal Chim Acta. 2011;699(2011):134-152. doi:10.1016/j.aca.2011.05.025
23. Tricoli J V, Jacobson JW. MicroRNA : Potential for Cancer Detection , Diagnosis , and Prognosis. Cancer Res. 2007;67(10):4553-4556. doi:10.1158/0008-5472.CAN-07-0563
24. Unver T, Namuth-Covert DM, Budak H. Review of Current Methodological Approaches for Characterizing MicroRNAs in Plants. Int J Plant Genomics. 2009;2009:11. doi:10.1155/2009/262463
25. Zhang B, Pan X, Wang Q, Cobb GP, Anderson TA. Computational identification of microRNAs and their targets. Comput Biol Chem. 2006;30(2006):395-407. doi:10.1016/j.compbiolchem.2006.08.006
26. Allmer J. Computational and Bioinformatics Methods for MicroRNA Gene Prediction. In: Yousef M, Allmer J, eds. MiRNomics: MicroRNA Biology and Computational Analysis. Vol 1107. 1st ed. New York: Humana Press; 2014:157-175. doi:10.1007/978-1-62703-748-8
27. Chaudhuri K, Chatterjee R. MicroRNA Detection and Target Prediction : Integration of Computational and Experimental Approaches. DNA Cell Biol. 2007;26(5):321-337. doi:10.1089/dna.2006.0549
28. Li L, Xu J, Yang D, Tan X, Wang H. Computational approaches for microRNA studies : a review. Mamm Genome. 2010;21:1-12. doi:10.1007/s00335-009-9241-2
29. Lee RC, Ambros V. An Extensive Class of Small RNAs in Caenorhabditis elegans. Science (80- ). 2001;294:862-864. doi:10.1126/science.1065329
30. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of Tissue-Specific MicroRNAs from Mouse. Curr Biol. 2002;12(02):735-739.
31. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of Novel Genes Coding for Small Expressed RNAs. Science (80- ). 2001;853(2001):853-858. doi:10.1126/science.1064921
32. Zuker M, Mathews DH, Turner DH. Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide. In: Barciszewski J, Clark BFC, eds. RNA Biochemistry and Biotechnology. 1st ed. Netherlands: Springer; 1999:11-43.
33. Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res. 2003;31(13):3429-3431. doi:10.1093/nar/gkg599
34. Oulas A, Reczko M, Poirazi P. MicroRNAs and Cancer — The Search Begins ! IEEE Trans Inf Technol Biomed. 2009;13(1):67-77.
35. Lim LP, Lau NC, Weinstein EG, et al. The microRNAs of Caenorhabditis elegans. Genes Dev. 2003;17:991-1008. doi:10.1101/gad.1074403.regulating
36. Lai EC, Tomancak P, Williams RW, Rubin GM. Computational identification of Drosophila microRNA genes. Genome Biol. 2003;4(7):1-20.
37. Yousef M, Najami N, Khaleifa W. MicroRNA Identification Based on Bioinformatics Approaches. In: Yang N-S, ed. Systems and Computational Biology. 1st ed. Europe: Intech; 2011:205-216.
38. Yousef M, Showe L, Showe M. A study of microRNAs in silico and in vivo : bioinformatics approaches to microRNA discovery and target identification. FEBS J. 2009;276:2150-2156. doi:10.1111/j.1742-4658.2009.06933.x
39. Boffelli D, Mcauliffe J, Ovcharenko D, et al. Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome. Science (80- ). 2003;299(5611):1391-1394. doi:10.1126/science.1081331
40. Berezikov E, Guryev V, Belt J van de, Wienholds E, Plasterk RHA, Cuppen E. Phylogenetic Shadowing and Computational Identification of Human microRNA Genes. Cell. 2005;120:21-24. doi:10.1016/j.cell.2004.12.031
41. Oulas A, Karathanasis N, Poirazi P. Computational Identification of miRNAs Involved in Cancer. In: Wu W, ed. MicroRNA and Cancer Methods and Protocols. 1st ed. Humana Press; 2011:23-41.
42. Griffiths-jones S, Saini HK, Dongen S Van, Enright AJ. miRBase : tools for microRNA genomics. Nucleic Acids Res. 2008;36:154-158. doi:10.1093/nar/gkm952
43. Nam J, Shin K, Han J, Lee Y, Kim VN, Zhang B. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res. 2005;33(11):3570-3581. doi:10.1093/nar/gki668
44. Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, Showe LC, Showe MK. Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics. 2006;22(11):1325-1334. doi:10.1093/bioinformatics/btl094
45. Oulas A, Karathanasis N, Louloupi A, Poirazi P. Finding Cancer-Associated miRNAs : Methods and Tools. Mol Biotechnol. 2011;49:97-107. doi:10.1007/s12033-011-9416-4
46. Malas TB, Ravasi T. Computational Tools for Genome-Wide miRNA Prediction and Study. Open Biol J. 2012;5:23-30.
47. Hertel J, Stadler PF. Hairpins in a Haystack : recognizing microRNA precursors in comparative genomics data. Bioinformatics. 2006;22(14):197-202. doi:10.1093/bioinformatics/btl257
48. Huang T, Fan B, Rothschild MF, Hu Z, Li K, Zhao S. MiRFinder : an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics. 2007;10:1-10. doi:10.1186/1471-2105-8-341
49. Min H, Yoon S. Got target ?: computational methods for microRNA target prediction and their extension. Exp Mol Med. 2010;42(4):233-244. doi:10.3858/emm.2010.42.4.032
50. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial Analysis of Gene Expression. Science (80- ). 1995;270:484-488.
51. Wang Z, Yang B. Northern Blotting and Its Variants for Detecting Expression and Analyzing Tissue Distribution of miRNAs. In: Wang Z, Yang B, eds. MicroRNA Expression Detection Methods. 1st ed. Berlin Heidelberg: Springer-Verlag; 2010:83-100.
52. Cummins JM, He Y, Leary RJ, et al. The colorectal microRNAome. PNAS. 2006;103(10):3687-3692.
53. Winter J, Diederichs S. MicroRNA Northern blotting, precursor cloning, and Ago2-improved RNA interference. In: Wu W, ed. MicroRNA and Cancer. 1st ed. Humana Press; 2011:85-100.
54. Alwine JC, Kemp DJ, Stark GR. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA. 1977;74(12):5350-5354.
55. Kim SW, Li Z, Moore PS, et al. A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res. 2010;38(7):1-7. doi:10.1093/nar/gkp1235
56. Varallyay E, Burgyan J, Havelda Z. Detection of microRNAs by Northern blot analyses using LNA probes ´ va Va. Methods. 2007;43(2007):140-145. doi:10.1016/j.ymeth.2007.04.004
57. Pall GS, Hamilton AJ. Improved northern blot method for enhanced detection of small RNA. Nat Protoc. 2008;3(6):1077-1084. doi:10.1038/nprot.2008.67
58. Wang Z, Yang B. In Situ Hybridization and Its Variants for Detecting Expression and Analyzing Cellular Distribution of miRNAs. In: Wang, Z.; Yang B, ed. MicroRNA Expression Detection Methods. 1st ed. New York: Splinger; 2010:103-127.
59. Song R, Ro S, Yan W. In situ hybridization detection of microRNAs. Methods Mol Biol. 2010;629:287-294. doi:10.1007/978-1-60761-657-3
60. Yamamichi N, Shimomura R, Inada K, et al. Locked Nucleic Acid In situ Hybridization Analysis of miR-21 Expression during Colorectal Cancer Development. Hum Cancer Biol. 2009;15(3):4009-4017. doi:10.1158/1078-0432.CCR-08-3257
61. Pena JTG, Sohn-lee C, Rouhanifard SH, et al. miRNA in situ hybridization in mammalian tissues fixed with formaldehyde and EDC. Nat Methods. 2010;6(2):139-141. doi:10.1038/nmeth.1294.miRNA
62. Jiang J, Lee EJ, Gusev Y, Schmittgen TD. Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res. 2005;33(17):5394-5403. doi:10.1093/nar/gki863
63. Schmittgen TD, Lee EJ, Jiang J, et al. Real-time PCR quantification of precursor and mature microRNA. Methods. 2008;44(1):31-38. doi:10.1016/j.ymeth.2007.09.006.Real-time
64. Raymond CK, Roberts BS, Garrett-engele P, Lim LP, Johnson JM. Simple , quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA. 2005;11:1737-1744. doi:10.1261/rna.2148705.2004
65. Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem – loop RT – PCR. Nucleic Acids Res. 2005;33(20):1-9. doi:10.1093/nar/gni178
66. Sharbati-Tehrani S, Kutz-Lohroff B, Bergbauer R, Scholven J, Einspanier R. miR-Q : a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol. 2008;13:1-13. doi:10.1186/1471-2199-9-34
67. Schena M, Shalon D, Davis RW, Brownt P. Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science (80- ). 1995;270:467-470.
68. Liu C, Calin GA, Volinia S, Croce CM. MicroRNA expression profiling using microarrays. Nat Protoc. 2008;3(4):563-578. doi:10.1038/nprot.2008.14
69. Li W, Ruan K. MicroRNA detection by microarray. Anal Bioanal Chem. 2009;394:1117-1124. doi:10.1007/s00216-008-2570-2
70. Yin JQ, Zhao RC, Morris K V. Profiling microRNA expression with microarrays. Trends Biotechnol. 2008;26(2):70-76. doi:10.1016/j.tibtech.2007.11.007
71. Castoldi M, Schmidt S, Benes V, et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA. 2006;12:913-920. doi:10.1261/rna.2332406.a
72. Sanger F, Nicklen S. DNA sequencing with chain-terminating. Proc Nati Acad Sci. 1977;74(12):5463-5467.
73. Voelkerding K V, Dames SA, Durtschi JD. Next-Generation Sequencing : From Basic Research to Diagnostics. Clin Chem. 2009;55(4):641-658. doi:10.1373/clinchem.2008.112789
74. Liu L, Li Y, Li S, et al. Comparison of Next-Generation Sequencing Systems. J Biomed Biotecnol. 2012;2012:11. doi:10.1155/2012/251364
75. Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008;24(3):133-141. doi:10.1016/j.tig.2007.12.007
76. Morozova O, Marra MA. Genomics Applications of next-generation sequencing technologies in functional genomics. Genomics. 2008;92(2008):255-264. doi:10.1016/j.ygeno.2008.07.001
77. Motameny S, Wolters S, Nürnberg P, Schumacher B. Next Generation Sequencing of miRNAs – Strategies, Resources and Methods. Genes (Basel). 2010;1:70-84. doi:10.3390/genes1010070
78. Buermans HPJ, Ariyurek Y, Ommen G Van, Dunnen JT Den, Hoen P. New methods for next generation sequencing based microRNA expression profiling. BMC Genomics. 2010;11(716):1-16. | ||
آمار تعداد مشاهده مقاله: 6,408 تعداد دریافت فایل اصل مقاله: 6,047 |